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ABSTRACT

The new generation o f metagenomics has gained tremendous popularity in recent years. This 

has been majorly due to rapid advances in DNA sequencing technology, which has produced 

large amounts of sequence data in relatively shorter times, compared to conventional DNA 

sequencing methods. There is a need to taxonomically characterise these data by assigning 

individual sequence reads to their constituent taxa. However, there is lack of up-to-date and 

customized software tools to accomplish this task, and for taxonomic characterisation, an 

automated taxonomic classification scheme is necessary. The overall objective of this study 

was to improve the accuracy of the most recent common ancestor (MRCA) estimation 

method used in scoring metagenomic reads in the pathogen profiling pipeline (PPP). The 

specific objectives included investigating sequence comparison algorithms that have been 

used for assigning sequence reads to taxa excluding the MRCA, compare the taxonomic 

classification accuracy of MEGAN and MRCA on the same simulated metagenomic dataset 

and finally design the weighted MRCA algorithm that attains the maximum possible 

classification accuracy and implement it in the PPP. A novel "weighted most recent common 

ancestor" (weighted MRCA) algorithm was developed as a number of Perl scripts and 

evaluated for taxonomic accuracy. The datasets used for evaluation were simulated by the 

QSA Read simulator using reference viral and prokaryotic (Bacteria and Archaea) genomes 

obtained from the NCBI Refseq database. The results showed an improved mapping of up to 

3.6% for viral sequences and 8.4% for the prokaryotic sequences (^-values as low as 0.0043 

at a significance level of a -  0.05), at the species rank compared to MEGAN and MRCA. In 

the context of environmental science and medicine, these percentages are highly significant 

as they inform key decisions in public health. For large-scale pathogen discovery projects, 

this method facilitates more accurate analysis and reporting of candidate etiological agents in 

complex nucleic acid mixtures, which enhances outbreak preparedness by enhancing 

capacity for early recognition and containment of pathogens.
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CHAPTER ONE: INTRODUCTION

1.1 General Introduction
I he new generation of inetagenomics has brought with it a wealth of knowledge and changed the 

perspectives of analyzing microbial genomes. Metagenomics has been defined as “the study of 

the Deoxyribonucleic Acid (DNA) of uncultured microorganisms” (Handelsman, 2004). A 

genome is the entire genetic information of one organism, whereas a metagenome is the entire 

genetic information of an assemblage of organisms (Handelsman, 2004). This new approach 

utilizes techniques and protocols that allow researchers to obtain, and sequence the genomic 

content of microbial communities directly, without the need for culturing and cloning of all 

individual organisms present in the sample (Hugenholtz, 2002). Computational methods are 

subsequently used to study the sequenced fragments by numerous characterization strategies. 

(Wooley et al., 2010). In some cases, sequence fragments may be assembled into contigs that can 

be aligned using software and studied as whole genomes (Raes et al., 2007). Bypassing the need 

for isolation and laboratory cultivation of individual species, we can in principle be able to 

access 100% of the genetic information available in a microbial community in contrast to merely 

1% accessible through traditional sequencing of culturable organisms (Ghazanfar et al., 2010). . 

This new and evolving field of biology has demonstrated a wealth of comprehensive power and 

richness and is making tremendous contributions to microbial ecology, biodiversity, 

bioremediation, bioprospection of natural products, medicine, and many other fields (Ghazanfar 

et al., 2010).

The main goals of a metagenomics analysis include identification o f what populations of 

microorganisms are present in a given sample (“who is out there?”) and determining the role that 

each microorganism plays within a specific environment (“what are they doing?”) (Handelsman, 

2004). Metagenomics samples are found almost everywhere in the environment within the ocean, 

soil samples and several places within the human body (Turnbaugh et al., 2007), the diversity of 

microorganisms is thus thought to be in the range of tens of millions to greater than hundreds of 

millions of species (Harkins et al., 2007). This presents a bottleneck in the analysis due to the 

complexity and diversity o f the genomes involved as opposed to single-species genome analysis. 

Each of the genomes in the metagenomic sample has to be associated with its source organism, a
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task that is daunting. Since some microbial genomes have previously been sequenced, by 

extending the sequence data present in public repositories, it is possible to get a glimpse of what 

microorganisms are present in the sample. Some of the sequenced fragments may correspond to 

new organisms, genes and proteins that have potential applications in biotechnology and 

medicine (Steele and Streit, 2005).

Metagenomics and counterpart meta-strategies have achieved tremendous popularity because o f 

two major developments. There has been extensive (still ongoing) establishment of high- 

throughput DNA sequencing centres, employing next generation (next-gen) technologies 

(Petrosino et al., 2009). This has enabled the sequencing of large datasets in a relatively short 

time, an idea that had been difficult to realize. Moreover these datasets can be obtained at a 

relatively low cost compared to earlier sequencing technologies (Petrosino el al., 2009).

1.2 Strategies in metagenomics sequencing
Two metagenomic sequencing strategies, all aimed at identifying microbes in a complex 

community can be distinguished: directed metagenomics and shotgun metagenomics.

1.2.1. Directed metagenomics

Directed metagenomics involves the sequencing of long insert libraries after screening for the 

presence of certain phylogenetic e.g. 16S ribosomal Ribonucleic Acid genes (16S rRNA genes) 

or functional (e.g. certain enzymatic activity) markers (Sogin et al., 2006). There exists gene 

sequences in the small subunit of ribosomal RNA (16S rRNA genes) that play a significant role 

in estimating phylogenetic diversity and taxonomic mapping of environmental populations 

(Sogin et al., 2006). This is because there occurs significant variations in these rRNA genes o f 

different organisms (phylotypes) that allow for their differentiation. The highly conserved nature 

of these regions of sequence implies that Polymerase Chain Reaction (PCR) amplification with 

universal primers can allow for annealing of only these regions of sequence to the primers (Pace, 

1997). Subsequent cloning of these individual genes allows for separation, in which case the 

genes can then be sequenced. A filtering step to remove primers and other low quality data 

leaves only unique RNA tag sequences, which when analyzed generate a wealth of information 

relating to species richness and the relative abundance of the different Operational Taxonomic
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Units (OTUs) present in the microbial sample. Each of the tag sequences corresponds to an 

individual 0 1 U (Pace, 1997). A multiple alignment of tag sequences against the RNA sequences 

in the Ribosomal Database Project II (Cole et al., 2007) followed by subsequent clustering using 

linkage algorithms (Schloss and Handelsman, 2005) can generate a phylogenetic tree that clearly 

relates all the 01  Us in the sample. The amplification of 16S rRNA genes in metagenomics 

studies is prone to sequencing errors and other errors resulting from formation of chimeric 

sequences (Ashelford et al., 2005). These have been found to contribute largely to anomalies in 

public rRNA sequence databases. In one of the studies by Quince and colleagues (Quince et al., 

2009), there was evidence of overestimation of species diversity due to these errors. In order to 

eliminate these sequencing errors and maximize accuracy, Petrosino et al., (2009) propose the 

use o f proofreading DNA polymerases, and the variation of temperature gradients during the 

PCR amplification stage. This has resulted in a marked improvement and specificity of the DNA 

amplification, which in turn lessens the effect o f subsequent errors in the sequencing stage that 

follows thereafter.

1.2.2 Random shotgun sequencing

16S rRNA sequencing which has for many years been considered as the yardstick for efficient 

characterization of microbial communities may not serve to discriminate against and 

subsequently detect rare members of a given microbiome (Petrosino et al., 2009). This stems 

from the fact that microbiomes tend to be very divergent in terms of microorganisms present 

(Petrosino et al., 2009). Thus, in order to overcome these challenges, whole genomes providing 

more comprehensive genome coverage can be sequenced. This is done by the use of the new 

generation parallel high-throughput sequencing technologies. The nature of these shotgun 

sequencing approaches has led to the discovery of many new genes that encode different 

biochemical and metabolic functions, as evidenced in the “Global Ocean Sequencing project”, 

(Yooseph et al., 2007). In this strategy, random sequencing of clones generated from aggregate 

DNA by Sanger or pyrosequencing of aggregate DNA, without cloning is carried out. DNA is 

first randomly sheared into smaller fragments which are then sequenced individually to obtain 

“reads.” This unbiased approach provides a broad survey of almost all the gene content and 

metabolic capabilities of a given microbiome. A major challenge in shotgun metagenomic 

sequencing projects is the potential contamination of metagenomic samples with host genetic 

material. Due to the sources from which these samples are drawn, and the manner in which they
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are treated (extract and shred all DNA in the sample), it is inevitable to avoid the effects of host 

microbial contamination (Kunin et al., 2008). However, different subtraction strategies (for 

human DNA sequences) are being developed to lessen the effect of host DNA contamination 

(Petrosino et al., 2009). More recently, a standalone method as well as its counterpart web-based 

version has been developed to identify and subsequently remove contaminants from sequence 

data (Schmieder and Edwards, 2011). Also, since most of the DNA corresponds to potentially 

previously uncharacterized genes, shotgun metagenomic projects result in a high number o f 

genes of unknown function. This is mainly due to the fact that similarity searches against current 

public repositories may not always contain relatives to the target sequences being searched for 

(database limitation) as highlighted in Huson et al., (2009). Evidence from recent studies (Shah 

et al., 2010; Morgan et al., 2010) has shown that taxonomic profiles inferred from metagenomic 

sequences greatly rely on and are limited by the DNA extraction method used as well as the 

sequencing protocol employed. Furthermore, shotgun metagenomic sequencing is generally not 

deep enough to detect rare species in complex communities but can be extended more reliably to 

identify viruses, bacteria, fungi and protists. Notable projects based on these methodologies 

include data sets from an acid mine biofilm (Tyson et al, 2004), seawater samples (Venter et al., 

2004; DeLong et al., 2006), deep-sea sediments (Hallam et al., 2004), or soil and whale falls 

(Tringe et al, 2005).

Random shotgun metagenomics has enabled the rapid characterization of novel and emerging 

pathogens at the genomic level, providing new means for unbiased and unambiguous 

identification of microbial disease agents in situations where other diagnostic technologies may 

fail. Moreover, studies are now emerging that demonstrate the power o f next generation (next- 

gen) sequencing technology in identifying previously elusive etiological agents. For example, 

this technology has been applied in outbreak surveillance to identify novel viruses associated 

with Colony Collapse Disorder in honeybee colonies (Cox-Foster et a l, 2007), and also used as a 

diagnostic tool for detecting etiological agents in transplant-associated fatalities (Palacios et al, 

2008).
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1.3 Problem statement
I axonomic characterization of metagenomic data involves assigning individual sequence reads 

to their source organisms, which requires customised software tools. The PPP utilises the MRCA 

algorithm to perform this task. The method is simple, fast, and reasonably accurate. However, it 

fails to take into account possible confounding factors such as sequence complexity, horizontal 

transfer of sequences across species, and the degree of representation of identical sequences 

within other microbes. It also fails to consider taxonomic assignments within the context of the 

larger overall read data set, wherein assignments may be supported by other (very numerous) 

read taxonomic assignments.

1.4 Justification
A typical metagenomics study produces a massive amount of data that comprises a diverse 

population of microorganisms. The exploratory nature of this approach and the lack o f 

customised software solutions to analyse this data presents a substantial challenge for 

bioinformatics analysis towards obtaining meaningful information from these large, complex 

datasets. Many studies still make use of classical methods, outdated software or web services that 

originally were not intended for metagenomic data analysis and thus have to be adapted or 

pipelined to produce the desired results (Pachter, 2007). There is thus a need to develop up-to- 

date customised computing and targeted analysis systems that quickly organize metagenomics 

sequence output data for quick and logical characterization of these microbiomes. Owing to the 

massive amounts of data generated, an automated taxonomic classification scheme is necessary, 

and because it is automated, it must have the maximum possible classification accuracy.

The weighted MRCA algorithm is implemented in the Pathogen Profiling Pipeline (PPP) which 

is an important bioinformatics tool for metagenomics analysis. Designed for application in the 

earliest stages of disease outbreaks and in situations where standard diagnostic technologies may 

fail to conclusively identify a causative agent of infectious disease, PPP provides a 

comprehensive and flexible system for biologists to rapidly identify candidate etiological agents, 

including novel unknowns, directly from clinical specimens for follow-up confirmatory studies.
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1.5 Objectives
The main objective was to improve the accuracy of the MRCA estimation method used in 

scoring metagenomics reads in the PPP.

The specific objectives were to:

i. Investigate sequence comparison algorithms for metagenomic taxonomic assignment, 

excluding MRCA.

ii. Compare the taxonomic classification accuracy of MEGAN and MRCA on a simulated 

metagenomic dataset generated using QSA Read Simulator.

iii. Design the weighted MRCA algorithm that attains the maximum possible classification 

accuracy and implement it in the PPP.

1.6 Motivation
This work was done within the context of the metagenomics software research and development 

program headed by Dr. Gary Van Domselaar at the National Microbiology Laboratory (NML) o f 

the Public Health Agency o f Canada (PHAC), in Winnipeg Manitoba. Work on the development
v

of computational tools for metagenomics analysis was initiated as a number of ad hoc Perl 

scripts to assist in analysis of the enormous in-house generated metagenomic data from 

pyrosequencing projects at PHAC. PPP was developed and has since evolved into a fully fledged 

system with a customisable user interface that can be used in metagenomic analysis from 

sequence analysis to generating informative reports. The ability to correctly identify the source 

organism from which a given genome sequence read derived from a myriad of genomic data 

(metagenome) is the utmost goal. Initial work on the PPP revealed that the MRCA algorithm 

used for scoring reads had several limitations, the most severe of which was the inability to 

exclude outlying (i.e. taxonomically distant) candidate taxa from consideration when assigning a 

group of similar reads to an OTU.
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1.7 Scope of the study

This work focused on extensively reviewing other methods (algorithms) that have been used for 

taxonomic estimation of metagenomic samples and deliberating on which aspects of these 

methods can be exploited for implementation within the PPP to augment or replace the existing 

algorithm. Both sequence comparison and sequence composition methods for metagenomic 

taxonomic assignment were assessed in that order. The methods that could be utilized for 

taxonomic estimation of viral and prokaryotic (Bacteria and Archaea) sequence data were tested 

for taxonomic classification accuracy. The QSA Read simulator was used to generate short 

sequence reads of lengths 200-500bp (simulated test data sets), in a manner that is in accordance 

with pyrosequencing data as obtained from the GS FLX genome sequencer. Test metagenomic 

datasets were generated from reference genomes of all viral and prokaryotic (bacteria and 

archaea) origin obtained from the NCBI Refseq database (release 41). All tests were run on the 

same Intel(R) Xeon(R) CPU, 1.86 GHz processor workstation running Ubuntu 10.04 x86_64. On 

the basis of classification accuracy, none of the reviewed methods surpassed the MRCA; a novel 

algorithm was designed, implemented in the PPP and assessed for taxonomic classification 

accuracy in a similar manner.

1.8 Thesis overview
Chapter one gives a general introduction into the field of metagenomics. Different strategies o f 

metagenomic sequencing are briefly discussed here. The problem, justification and objectives o f 

the study are also covered in this chapter. Chapter two focuses on reviewing other metagenomic 

analysis approaches for taxonomic estimation that have been used previously. This section 

highlights the details of the PPP software system which is used for testing in this project and its 

current limitations. The methodology used for this study is detailed in Chapter three with other 

installation guidelines and scripts in the Appendices. Results of the study and the discussion are 

combined in Chapter four. Conclusions, limitations and further work feature in Chapter five. 

Bibliography and Appendices for the study are reflected in Chapters six and seven respectively.
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CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction
I raditional genomic studies involve culturing, cloning and subsequent characterisation o f 

individual microorganisms in the laboratory (Amann et al., 1995). In the laboratory, the process 

of detecting pathogenic microbes in a clinical sample involves routine isolation, growing on 

specific biochemical media followed by subsequent testing using standard laboratory protocols. 

However, the biggest percentage of microorganisms found in natural environments cannot be 

identified by these methods (Petrosino et al., 2009). This is because these microorganisms have 

not been previously cultured, thus the conditions that favour their growth on media are unknown. 

Staley and Konopka (1985) carried out experiments which led to the conclusion that greater than 

99% of most microbes cannot be easily cultured and identified by these standard techniques. 

These unculturable individuals constitute a diverse population of microorganisms with distinct 

inter-relationships in the ecosystem, and are either not or distantly related to the culturable ones. 

Following from these findings, culture-independent methods (Reisenfeld et al., 2004) are now 

preferred techniques for understanding genetic diversity and taxonomic relationships between 

these microorganisms within the ecosystem. A large number of microbes have previously been 

isolated, cultured and sequenced, resulting in an enormous amount of genomic sequence data 

that is deposited in public databases (Pruitt et al., 2005; Sayers et al., 2009; Benson et al., 2011). 

This has strengthened the fields of microbiology and also impacted largely on microbial 

evolution studies. Scientists are now able to easily examine both the inter- and intra

relationships of these microorganisms, and draw insights into the functionality of the ecosystems 

from which these microbes are derived (Wooley et al., 2010).

Manichanh et al., (2008) demonstrated that close scrutiny and evaluation of a metagenomic 

dataset derived either by directed sequencing or shotgun approaches provides insights into the 

underlying genetic and microbial diversity stored in a metagenomic library. Venter and 

colleagues (2004) carried out a pilot study on whole genome shotgun sequencing to samples of 

the Sargasso Sea in order to characterize the microbial community and identify new genes and 

species. The dataset revealed extraordinary biodiversity including 1.66 million sequences
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comprising 1.045 billion base pairs (bp). The samples contained approximately 1800 microbial 

species, 150 new bacterial species and about 1.2 million new genes (Rolf and Carola, 2009).

The introduction of parallel, high-throughput sequencing technologies, resulting in the 

generation of huge amounts of data (millions of bases per run), has contributed to their 

widespread adoption. The rate at which these data are produced has also contributed largely to 

their popular usage backed by extensive commercialization. When compared to previous 

sequencing technologies such as shotgun or Sanger sequencing (Sanger et al., 1977), they have 

much more popular usage (Petrosino et al., 2009). The next-gen technologies that have been 

used widely to generate and sequence reads are the Roche/454 (Margulies et al., 2007), 

lllumina/Solexa (Cuddapah et al., 2009), Life/APG (Valouev et al., 2008) and Helicos 

Biosciences (Harris et al., 2008). The first generation instrument from Roche/454, the Genome 

Sequencer 20 (GS 20) generated 100-bp reads and 30 -  60 Mega bases (Mb) per run. The second 

(GS FLX Standard) and third (GS FLX Titanium generation platforms, yield 250-bp reads 

(approximately 150 Mb/run) and greater than 350 bp reads (approximately 400 Mb/run) 

respectively (Petrosino et al., 2009).

Of interest is the 454 sequencing technology that was employed in generating sequence reads 

that were used in background studies for this work. The term 454 sequencing refers to high- 

throughput sequencing platforms (e.g., Roche/454 Life Sciences) for metagenomics that are 

based on pyrosequencing chemistry. The pyrosequencing methodology used by the GS FLX 

instrument which was employed in this study, is based on protocols developed by Margulies et 

al., (2007). Unique to this method is the usage of emulsion based PCR (emPCR) protocols in 

which each bead binds a single fragment of DNA (Margulies et al., 2007). Since approximately 

one million of these beads can be deposited on a microtitre plate, a large number of fragmented 

DNA can be analyzed in a rather short time.

The sequencing step generates reads of approximately 400-500 nucleotides in length that have 

been randomly sampled from the genetic material contained in the metagenomic sample. In 

order to maximize the sampling of all taxonomies represented in the sample many sequence 

reads (up to a million) are generated. Overlapping sequence reads obtained may be progressively
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assembled into contigs by several assembly methods. The GS FLX instrument comes with an 

assembly program, GS Assembler read assembly. Alternatively, sequence reads can be analyzed 

directly and the taxonomic composition determined. Several methods have been developed for 

this purpose and differ in their taxonomic assignment depending on the algorithms employed and 

how the input DNA is represented (either as raw sequence reads, contigs or other segments such 

as a short sequence of nucleotides (oligomers)). These methods are reviewed in the next section.

The correct assignment o f every read to its source organism is an important task in 

metagenomics and has been the subject of research in recent years. This process termed 

taxonomic profiling (Monzoorul el al., 2009) involves the use of sequence similarity or sequence 

composition based methods. In their most popular usage, sequence similarity based methods use 

sequence similarity programs that relate the reads to sequence data represented in public 

databases. If the environmental DNA sequenced is closely related to sequence data from 

previously sequenced organisms, of which their sequence data is represented in the database, 

then the taxonomic profile o f this metagenome can be easily and reliably estimated. However, as 

is usually the case with most metagenomic studies, most of the microbes in the environmental 

sample correspond to new organisms, due to constant evolution. Some o f these microbes might 

have divergently evolved that no sequences in the public repositories closely relate to them. In 

such a case, a metagenomic study will result in most of these microbes being characterized as 

unknown (Huson et al., 2009).

The process of obtaining OTUs, which are the taxonomic groupings present in the sample, Irom 

raw sequence reads, involves first surveying the reads obtained from pyrosequencing for possible 

contamination. In metagenomics, nucleic acid contamination may result from host organism or 

from the environment itself. This may be done by comparing the reads against a database 

containing host genome sequences. DeconSeq, a publicly available software to assess and 

subsequently remove contaminants from read sequences has recently been developed (Schmieder 

and Edwards, 2011). Sequence reads can also be filtered to remove duplicates and low quality 

reads. Sequence similarity programs e.g BLAST are then used to obtain regions of similarity 

between reads and reference database sequences e.g NCBI-nr, nt or RefSeq by mapping the read 

sequences against these databases. This yields a count of sequence reads assigned to a given
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organism. BLAS I results are then evaluated in terms of parameters including percent identity. 

High-scoring Segment Pairs (HSPs), or bitscore values. Depending on the set threshold values 

tor these parameters, the reads that fall within the range are preserved as high scoring sequence 

matches. The organisms to which the query reads mapped are then assessed for their taxonomic 

relationship by first mapping them to their corresponding taxonomic units in the NCB1 taxonomy 

tree. Consequently, all the reads assigned to a particular source organism are grouped together. 

All the organisms that map to the same subtree in the taxonomy tree are grouped in the same 

OTU. Several approaches have been cited that give an estimate of taxa present in a metagenomic 

sample and they are broadly classified into two.

i. Sequence composition based and

ii. Sequence comparison based methods.

2.2 Sequence composition-based methods for taxonomic assignment
These methods extract sequence features, like GC content or k-mer frequencies, and compare

them with features of reference sequences with known taxonomic classifications (Woese et al., 

1977). More particularly, different techniques, like the calculation of correlation coefficients 

between oligonucleotide patterns (Tatusov et al., 2001), self-organizing maps (SOMs) (Cicarelli 

et al., 2006), or support vector machines (SVMs) (Cole et al., 2005) can be used to classify the 

metagenomic fragments. PhyloPythia is an example of a multiclass support vector machine 

(SVM) classifier that is reported to have achieved a classification accuracy of between 79-96% 

for fragments of unknown organisms (McHardy et al., 2007).

In previous studies (Deschavanne et al., 1999), genome sequence composition was used to 

phylogenetically characterise sequence fragments of unknown taxonomic origin. Sections of the 

genome sequence carry genome signatures that have been revealed to play a significant role in 

determining organism-specific characteristics. It is this characteristic feature that was utilized in 

the design of the PhyloPythia algorithm, alongside the oligonucleotide composition of variable- 

length genome fragments. These genome signatures are used to train an SVM which can then be 

applied to another dataset that may contain similar features. This high-dimensional supervised 

classification method uses sparse input data to solve the problem of phylogenetic assignment to 

known clades (dominant sample populations or higher level clades). PhyloPythia was tested on
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two fundamental metagenomic datasets; the Enhanced Biological Phosphorus-Removing (EBPR) 

sludge (Martin et al., 2006) and the Sargasso Sea (Venter et a l 2004). In both cases, the method 

accurately classified genomic fragments >1-3 kilo bases (kb) for all taxonomic ranks considered. 

For fragments of unknown organisms, PhyloPythia was found to correctly assign greater than 

80% for all lengths and taxonomic ranks for the query datasets. It was also noted that accuracy 

increased further when assigning fragments from known organisms. This is due to the fact that 

close relatives of these organisms exist in the databases used for training. For fragments >3 kb, 

the sensitivity and specificity was greater than 90% for clades from the rank of domain to order.

CompostBin (Chatterji et al., 2008), a binning algorithm was developed for the purpose of 

solving the taxonomic classification problem for metagenomic samples o f unknown origin. This 

unsupervised approach does not require training on currently available genomes and thus 

eliminates the database limitation where in environmental sequences can only be classified based 

on what is represented in the database. It uses a weighted version of the standard Principal 

Component Analysis (PCA) technique (Jolliffe, 2002) to extract a “meaningful” lower 

dimensional sub-space. Chatterji et al., (2008) report that raw environmental sequence reads and 

information about mate-pairs obtained from pyrosequencing are required for taxonomic 

assignment. Phylogenetic markers are also an important aspect and in combination with the 

above, provide the input sample to the CompostBin algorithm. The algorithm also utilizes some 

information about the possible number of abundant species, to be able to determine the number 

of bins in the output. Sample reads can be evaluated for rRNA marker genes as in all directed 

metagenomics projects to ascertain taxonomic groupings (Rusch et al., 2007). 1 he algorithm can 

distinguish sequences from various species using just the first three principal components, aided 

by the normalized cut clustering algorithm (Chatterji et al., 2008). CompostBin was applied to a 

simulated metagenomic dataset and resulted in accurate and definite taxonomic bins, even when 

applied to raw reads of short sequences. The error rates observed correlated mostly with the 

phylogenetic distances between the species and the relative abundance of species.

TETRA implements an unsupervised approach by utilizing the innate but weak phylogenetic 

signal carried in tetranucleotide frequencies. Reverse complements o f both the forward and 

backward strands are obtained in either direction, to account for different codon usage. A
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maximal-order Markov model is used to calculate the frequencies o f all 256 possible 

tetranucleotides and the corresponding expected frequencies from the sequences' di- and 

trinucleotide composition (Teeling et al., 2004). This also helps detect tetranucleotide over- and 

underrepresentation by approximation (Schbath et al., 1995; 1997) which converts the 

divergence between the observed and expected tetranucleotide frequencies into z-scores. As a 

last ditch, all DNA sequences are compared in pairs by computing the Pearson's correlation 

coefficient of their z-scores. TETRA performs comparably similar to PhyloPythia in identifying 

most of the larger fragments of the dominant sample populations. However, PhyloPythia 

surpasses in its ability to assign short fragments of the dominant populations and fragments of 

the higher-level clades that are best described by more complex shapes in feature space 

(McHardy et al., 2007).

In studies by Abe et al., (2002, 2005, 2006, 2007), the standard Self Organizing Map (SOM) 

showed the ability to classify environmental DNA fragments of lengths >10 kb. This was done 

by projecting the data into a two-dimensional (2D) flat Euclidean space, which enables 

visualising several features at once. On the map, every lattice point represents a node whose 

weight has the same dimension as the input vector (oligonucleotide pattern). Similar samples are 

clustered together on the grid map and unknown sequence data can be classified by calculating 

the distance between the lattice points (Abe et al., 2007). However, genomic intrinsic features 

may not be mapped correctly in this space and it is more likely that they are structured 

hierarchically. This is the same representation of species in the Tree of Life. The importance of 

organizing data in a hierarchical manner cannot be surpassed as it enables the data to grow 

exponentially (Hierarchical SOM). In a similar manner, the amount of metagenomic data grows 

exponentially, and this implies that mapping into a geometric space with similar behaviour is 

more appropriate. This method has been previously applied to text mining by Ontrup and Ritter 

(2006), and registered many successes. The same strategy continues to show promise for 

genomic sequences, as previously documented by Martin et al., (2008).

The seeded-Growing Self Organizing Map (S-GSOM) has also been used to analyze 

metagenomic data and can form bins at different taxonomic levels. As opposed to SVMs, the S- 

GSOM is a semi-supervised clustering algorithm, utilising similar features in the sequence data
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to form taxon-specific bins. Like all binning methods, bins that have different labels in a lower 

taxonomic level may belong to the same higher taxonomic level but can be combined to form 

higher taxonomic bins, thus accuracy is higher, at the cost of lower taxonomic resolution (Chan 

et al., 2008). S-GSOM outperfonned the binning methods that depend on already-sequenced 

genomes, and compares well to the current most advanced composition-based binning method, 

PhyloPythia.

Supervised algorithms e.g SVMs, perform better at a given classification problem since they 

have been trained on the inherent distinguishing characteristics of the dataset as opposed to the 

counterpart unsupervised methods that possess no knowledge of relevance of features (McHardy 

et al., 2007). However, some of the tools above require training, employing known genomic 

sequences of different taxonomic origin. The accuracy of the phylogenetic classification thus 

depends on a number of factors such as fragment length of the environmental DNA and the 

amount or origin of the genomic sequences used for training (Teeling et al., 2004b).

2.3 Sequence comparison-based methods for taxonomic assignment
Comparison-based methods rely on homology information obtained by database searches, e.g.

using search tools like BLAST (Altschul et al., 1990), to classify sequences based on the 

distribution of BLAST hits o f predicted genes to taxonomic classes.

Huson and colleagues (Huson et al., 2007; 2009) developed MEGAN, a method to explore the 

taxonomic content of a given metagenomic dataset. In a preliminary step, a set of sequence 

reference databases of choice, e.g NCBI-nr, NCBI-nt, NCBI-env-nr, or NCBI-env-nt (Benson et 

al., 2006), are pooled. Raw sequence reads are then compared against these, using a similarity 

searching program such as BLAST. Subsequent analyses are then carried out using MEGAN, 

which employs a simple lowest common ancestor algorithm (LCA) to assign a read to its lowest 

common ancestor, using the NCBI taxonomy. In so doing, widely conserved sequences are 

assigned to higher order taxa closer to the root as opposed to species-specific sequences which 

are assigned at the leaves (Huson et al., 2007). MEGAN was validated on the metagenomic 

dataset from the Sargasso Sea. The analysis attained a result that is in agreement with Venter et 

al., (2004). In the same way, the mammoth bone dataset (Poinar et al., 2006) was re-analyzed
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using MEGAN. Nearly 50% of the analyzed sequences were mapped to mammoth DNA, 

whereas the remaining sequences were found to be derived from endogenous bacteria and non- 

elephantid environmental contaminants (Poinar et al., 2006), a result that is in agreement with 

what was obtained from MEGAN.

The CARMA algorithm developed by Krause et al., (2008), relies on conserved domains and 

protein families (Finn et al., 2006), to be able to predict the source organisms of given 

environmental DNA sequences. Using raw sequence reads as input, the algorithm searches for 

Pfam domains and protein family fragments (environmental gene tags- EGTs) that are conserved 

in the sample, by employing Pfam’s profile hidden Markov models. In the second phase, the 

algorithm reconstructs a phylogenetic tree for each matching Pfam family. These trees consist of 

all previously detected EGTs and all other family members with known taxonomic affiliations. 

Using this method, it was observed that EGTs shorter than 30 amino acids could reliably be 

classified (Krause et al., 2008), although at a high computational cost (Diaz et al., 2009; Krause 

et al., 2008).

Another method, Phymm with its hybrid PhymmBL, (Brady and Salzberg, 2009) incorporates 

interpolated Markov models (IMMs) in the process of characterizing unknown environmental 

gene sequences into definite phylogenetic groupings, based on information from multiple 

oligonucleotides of different lengths. Previously, IMMs were successfully applied to bacterial 

gene finding in the Glimmer system (Salzberg et al., 1998), but had never been used for 

taxonomic characterisation of samples of unknown origin (Brady and Salzberg, 2009). Results 

from the acid mine drainage metagenome study (Tyson et al., 2004), demonstrated that lor short 

reads, Phymm as compared to previous methods such as PhyloPythia, showed a marked 

improvement in accurately classifying unknown fragments as short as 100 bp. Results from the 

hybrid method (PhymmBL) which incorporates information from both Phymm and BLASI, 

showed that this hybrid method outperforms either of the two single methods (Brady and 

Salzberg, 2009).

The SOrt-ITEMS algorithm developed by Monzoorul and colleagues (Monzoorul et al., 2009) 

incorporates an orthology based approach, in addition to BLAST alignment parameters such as
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bitscore, alignment length, percent identity, to subsequently arrive at an appropriate level in the 

taxonomic tree at which a sequence read can be assigned. For hits that show significant 

orthology to a query read sequence, a reciprocal similarity search with the query read sequence 

(Monzooru! et al., 2009) is carried out. All the hits identified as orthologs o f the query sequence 

are then examined for the final assignment of the read. SOrt-ITEMS, which employs a 

modification of the algorithm used in MEGAN, shows improved taxonomic assignment over 

MEGAN, although it is more time consuming.

\

PPP utilises a MRCA approach which relies on sequence similarity search by BLAST. This 

approach is similar to the MRCA algorithm used in MEGAN and SOrt-ITEMS; the specifics of 

PPP are detailed below.

2.4 The Pathogen Profiling Pipeline (PPP)
PPP is an integrated system for rapidly surveying the microbial population in complex template 

mixtures without the need for laboratory cultivation. In a pre-processing step, nucleic acids are 

first extracted from representative clinical specimens using established laboratory protocols 

followed by Roche GS FLX pyrosequencing of random shotgun metagenomic libraries. This 

provides input sequence data for the PPP. This sequence data is then surveyed for microbial 

sequence signatures in a flexible manner. Researchers can construct a custom data analysis 

pipeline using the web interface by defining sets o f reference databases to which input sequence 

reads are compared and the order in which they are to be searched. I he sequence reads are 

compared to the reference databases (referred to as "steps") using BLASI alignment algorithms, 

then filtered according to thresholds (e.g. alignment length, percent identity). Using adjustable 

cut-off values of High scoring Segment Pair (HSP) length and percent identity, high scoring 

reads are assigned as “hits” to the step and subtracted from downstream analysis. A taxonomic 

rank filter is also provided where a maximum taxon rank is applied from a read (Pertsemlidis and 

Fondon, 2001). A concept of'equivalent hits' is used and these are BLAST results falling within 

an assigned percentage of the top hit's bit score. The researcher may assign this cut-ofl during 

pipeline construction. Equivalent hits are used to taxonomically assign the sequence read using a 

simple MRCA approach. Reads lacking hits or that fail threshold filtering are optionally 

recombined with unassigned reads from other analysis steps, and then passed along to
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subsequent steps within the analysis pipeline. The unfiltered reads progress to subsequent filters 

for pathogen identification (e.g. viruses, bacteria, parasites, fungi). This strategy is useful for 

removing sequence reads derived from host, and helps to organize the large, complex set of input 

reads into logical subsets for additional downstream analyses. Reports are generated for each 

filtering step that detail the sequence match quality, taxonomic assignment, hits to similar 

reference sequences, and read abundances at different levels of taxonomic specificity. Reads and 

reports are also exportable for additional analyses in other metagenomics applications. For 

maximum throughput within tight time constraints (such as in emergency response situations), 

the PPP application is run on a high performance parallel computing cluster to distribute the 

compute-intensive analyses (Matthews et al., unpublished).

It is highly desirable that all sequence reads obtained from a metagenomic microbial survey are 

assigned to a particular strain in the community. However, this is not usually possible due to the 

differences in abundance of the strains and variation of sequence coverage. I he MRCA approach 

used in the PPP fails to account for this property in the way reads are assigned to their source 

organisms on several fronts. It fails to account for possible confounding factors such as sequence 

complexity and the degree of representation of identical sequences within other microbes. PPP 

also fails to consider taxonomic assignments within the context of the larger overall read data set, 

wherein assignments may be supported by other (very numerous) read taxonomic assignments. 

Figure 1 illustrates the workflow in a typical analysis pipeline in the PPP.
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2.5 Summary
Assigning a taxonomic classification to all the sequence reads in a metagenomic dataset remains 

a difficult task. However, sequence-comparison based methods achieve this with reasonable 

accuracy and as such have been used in most metagenomic studies (Wooley el al., 2010). This 

approach involves a BLAST search of the environmental (metagenomic) query sequence against 

a reference database. Filtering by significance of similarity is achieved by analysing the bit score, 

E-value or the percent identity. A taxonomy id is then assigned to the query environmental 

sequence based on taxonomic identification of the corresponding best BLAST hit thus providing 

a corresponding taxonomic profile of the environmental sample. The advantage of this approach 

is the use of all known genes as reference and the modest computational effort (Rolf and Carola, 

2009). This appeared to be the most appropriate approach to adopt for this study since 

metagenomic samples constitute a diverse population of microorganisms including prokaryotes 

and viruses. Due to this fact, composition-based methods would not be appropriate because they 

do not reliably differentiate between taxa for sequences derived from prokaryotes or viral 

sequences. This is because bacterial sequences are so closely related that properties such as GC 

content or tetranucleotide composition cannot significantly distinguish between them at the 

species or strain level when using short (under 1 kb) sequence fragments (Kunin el al., 2008). 

Conversely, viruses co-opt the host cell's replication machinery to replicate themselves; 

therefore, their nucleotide composition tends to evolve to match that of the host (Aragone s el 

al., 2010). Nucleotide composition therefore cannot be used to reliably distinguish different 

viruses that have tropism to the same host.

All the methods that taxonomically characterise metagenomics samples based on sequence 

composition i.e Phylopythia, CompostBin, TETRA and SOM, s-GSOM were not considered for 

evaluation in this study as explained above. Additionally, some of the methods for example 

PhyloPythia were only applicable to sequences that are more than lkb (1000 bp) yet the reads 

obtained from GS FLX experiments are much shorter (~250-500 bp).

Conversely, Phymm and PhymmBL, (Brady and Salzberg, 2009) which is based on sequence 

comparison was not evaluated. This was because the algorithm implemented in the PhymmBL 

program could not be used for taxonomic characterisation of samples of unknown origin (Brady
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and Salzberg, 2009). The SOrt-ITEMS1 software (Monzoorul et al., 2009) and the CARMA2 

software (Krause et al., 2008) were too not considered for evaluation.

1 The SOrt-ITEMS software obtained from httD://metagenomics.atc.tcs.com/binninR/SQrt-ITEMS/ was installed on 

the workstation. During testing, several bugs were reported by the developer and the fix is still in progress.

2 Version 1.2 of the stand alone CARMA software was obtained from http://www.cebitecAinj: 

bielefeld.de/brf/carma/. but the program could not be installed because of its dependence on an outdated operating 

system environment that was no longer available.
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CHAPTER THREE:METHODOLOGY

3.1 Introduction
This chapter presents the data and methods of analysis that were adopted to achieve the 

objectives of this study. PPP was downloaded and installed on the workstation. MEGAN was 

also downloaded and installed on the workstation along with its dependencies. The QSA Read 

simulator application was obtained as Perl scripts and put in a location on the workstation where 

it could be accessed. Simulated test data sets were generated by the QSA Read simulator and 

used to evaluate both the MRCA and the MEGAN algorithms on the basis of classification 

accuracy. The results from both tests were compared and a novel weighted MRCA algorithm 

developed. The new algorithm was evaluated on the same simulated dataset in terms of 

classification accuracy and later implemented in the PPP alongside the original MRCA. The 

workflow is illustrated in the flowchart (Figure 2).
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Figure 2: Flowchart illustrating the project workflow
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3.2 Installing and testing the Pathogen Profiling Pipeline
A stable version o f PPP (version 1.2) was downloaded'1 and installed on the Linux workstation 

with Intel(R) Xeon(R) C PU, 1.86 GHz processor running Ubuntu 10.04x86 64. The installation 

steps and testing methodologies are detailed in Appendix A (i). Figure 3 shows a screenshot of 

the installed PPP homepage. Sample data was processed by the pipeline to verify that the install 

was complete and the system was working properly.

Figure 3: Screenshot showing the Pathogen Profiling Pipeline homepage

3.3 Installing MEGAN
The Unix version of MEGAN version 3.9 (l luson et al., 2007) was downloaded and installed on 

the workstation as detailed in Appendix A (ii). 3 4

3 http://www.corefacilitv.ca/ppp/

4 http://www-ab.informatik.uni-tuebingen.de/data/software/megan/
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3.4 Obtaining data
Full prokaryotic (Bacteria and Archaea) and viral genomes were downloaded5 from the NCB1 

RefSeq database, release 41. The Perl script, dl.pl was written and used to dynamically download 

the databases. The script takes as input the FTP address above for cither prokaryotic or viral 

database, downloads all the different segments of the database in question and subsequently 

unzips them using a system command executed from the same directory where the databases 

were downloaded to. Details of the script are outlined in Appendix C (i).

Since the downloaded sequences were in Genbank File format and both MEGAN and PPP take as 

input a FASTA formatted file, the output of the gunzip command was then passed to another Perl 

script convert.pl, (details in Appendix C (ii)) which translated all the sequences into FASTA 

format. The simplicity of the FASTA sequence format made it possible for easy manipulation 

and sequence data was easily parsed in the Perl scripting language, which was being used in all 

the scripts. The RefSeq viral database contained 3642 genomes and the prokaryotic database 

contained 3473 genomes as of 9 May 2010. The RefSeq database contains non-redundant, well- 

annotated genome sequences of different organisms archived at the NCBI. The number of 

species represented in the respective database (determined by counting distinct taxonomy ids) 

were 2506 for viral genomes, and 5458 for prokaryotic genomes. All the databases were 

concatenated and loaded into the database folder using the web interlace. I he details are 

appended in Appendix A (i). Metagenomic data for use as test data was simulated from these 

full genomes as described in the next section.

5 ftp://ftp.ncbi.nih.gOv/refseq/release/41 /
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3.5 The QSA Read simulator
in order to carry out test analyses, simulated test data was required. This dataset was created 

using the QSA Read simulator6. The application written in Perl simulates sequence reads and 

errors as would be found in a pyrosequencing data set.

3.5.1 Simulation of test data sets

QSA Read simulator takes a FASTA file of known genome sequences or contigs as input, then 

randomly generates simulated reads from the input. To make the generated reads more 

authentic, the tool applies errors to the reads based on pyrosequencing error models (Muse el al., 

2007).

The tool’s processing pipeline consists of several phases:

• Selection of source genome sequences from the internal database

• Configuration of the species abundance profile by setting the relative copy number of the 

genome sequences

• Application of technology-specific error models to the fragments to create sequencing

reads

i) Selection of source genome sequences

The source organisms used consisted of all full prokaryotic and viral genome sequences which 

were downloaded from the Refseq database at the NCBI.

ii) Configuration of Species Abundance Profiles

Full prokaryotic and viral genome sequences downloaded from Refseq database were stored 

locally as source sequences thus constituting a local integrated database. I he relative abundances 

(numeric) of each genome sequence were specified in a text-based profile file by counting the 

distinct instances of each genome sequence.

6 QSA Read simulator obtained from Tom Matthews at NML, PHAC
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iii) Application of technology-specific error models to the fragments to create sequencing 

reads

a) Read sampling

For the simulation of read sequences, statistical approaches in Muse el al., 2007 were adopted to 

simulate the distribution of read lengths, the frequency rate and the use of pyrosequencing error 

models. Large fragments (clones) with a length of 400 bp and a standard deviation of 10 bp 

were modelled with a normal distribution N(400,10).

b) Simulation of pyrosequencing reads

The intensity of emitted light was used to estimate the length of homopolymers, i.e. runs of 

identical nucleotides in a sequence.

Let r denote the length of a given homopolymer. The intensity of emitted light was modelled 

using a normal distribution N(p,o), with mean p = r and standard deviation o = k.\r, where k is 

a fixed proportionality factor. Following Huse el al., 2007, by default k = 0.15 was used. 

Although basic statistics imply that the standard deviation should grow with the square root of r, 

in Huse el al., 2007, the standard deviation of the light intensity emitted during 454-sequencing 

is reported to be ci = k.r. Both variants of the calculation were implemented in the software.

A negative flow  is a flow o f nucleotides in which the sequence to synthesize is not elongated. 

Light intensities of negative flows follow a lognormal distribution, with mean p = 0.23, and 

standard deviation a = 0.15, (Huse el al., 2007). A random variable X is said to be lognormally 

distributed, if the random variable ///(X) is normally distributed.

Base-calling intensities of negative flows were simulated and the misinterpretation of null-mers 

were modelled as homopolymers of length = 1 (insertion). The algorithm takes the order of the 

sequencing flows into account. Since the nucleotides are cyclically flowed in the order T,A,C,G, 

after a given base only two specific negative flows in a specific order were allowed.

c) Applying empirical models to simulated reads

The simulator includes an empirical error model that allows the incorporation of user-defined 

error statistics. The general approach as described in Engle et al., 1994, in which the probability 

of an occurrence of a sequencing error depends on the position of the erroneous base and its 

surrounding bases, was taken.

26



1 he error model used in QSA Read simulator was based on mappings (error curves) that assign 

error rates to specific base positions. Each mapping has three parameters (the last two arc 

optional):

i. type of error (deletion, insertion, substituion),

ii. base at the position where the error occurs and

iii. base preceding the position where the error occurs.

The QSA Read simulator application was designed to be run on a modern Linux platform and 

required the following packages:

• Perl

• BioPerl, both of which were already installed.

The directory containing the application was obtained and placed in the applications folder, on a 

location on the computer from which the application was run. The QSA Read Simulator was 

initiated as follows. Other details are described in Appendix A (iii).

$ cd ~/apps/QSAreadsim

The following command was issued to simulate 10000 sequence reads from the RefSeq 

microbial database FASTA file (refmicrobial.fna), o f average length 206 within a standard 

deviation of 10 and with an accession prefix of “RM”. The error rates associated with this 

simulated pyrosequencing data are incorporated in the QSA Read simulator.

$ ./readsim.pl -r /home/hellen/apps/data/refmicrobial.fna -1 206 -d 10
-i RM -n 10000 -o simrefmicrobial_microbial_reads.fna

For the simulated viral data set, both MRCA and the MEGAN algorithm were evaluated on a 

simulated metagenome consisting 10000 reads from 196 complete genomes. Ihese were 

simulated on the basis of the GS FLX pyrosequencing model with lengths 162-251 nucleotides 

and average length of 206 nucleotides. This constituted ~ 5% of the database sequences.

In the simulation experiment consisting of prokaryotic simulated data, all the algorithms were 

evaluated on a metagenome consisting of 10000 reads from 2018 complete genomes. The created 

metagenome represented a complex microbial community, with sequence fragments from both 

Archaea and Bacteria.
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I he simulated data bears close similarity to a pyrosequencing experimental laboratory dataset 

since all the variables (mate-pairs, mutations, read lengths and relative abundances) that affect 

the sequencing process were incorporated in the QSA Read simulator program, that was used to 

generate the test data sets.

3.6 Testing MRCA (within PPP) and MEGAN using simulated test data
The data simulated above was loaded into the PPP using the web-based administration interface.

This input set was searched for similarity using the BLAST program (BLASTN) implemented 

within the pipeline as a selectable option against the same RefSeq database (RefSeq microbial) 

for prokaryotic simulated data and Refseq viral database for viral simulated data.

For testing MEGAN, a stand-alone BLAST search (BLASTN) was run locally on the simulated 

sequences (same data as was used in PPP runs) and the output of the BLAST search used as 

input to MEGAN. The database searched against was the original RefSeq database (microbial for 

prokaryotic genomes and viral for the viral genomes). This allowed for determining which of the 

sequences were falsely classified into a given class, since the correct taxonomic label was 

already known.

$ blastall -p blastn -d ~/apps/db/microbial.fna -i
~/apps/data/simrefmicrobial_microbial_reads.fna

The output of BLASTN was thereafter used as input to MEGAN using a bit score threshold of 40 

(same as in the PPP) and retaining only those hits that are within 10% of the top hit for each 

read.

Both PPP and MEGAN output files were analysed using Perl scripts to determine the 

classification accuracy of each algorithm in assigning metagenomic reads to the respective 

taxonomic labels. The Perl script ranksJllter.pl (Appendix C (iii)) takes as input the output of a 

PPP run (hits file) in a FASTA format and cross-references it with the original database to 

determine if the assignments obtained by the MRCA algorithm in PPP, are the same as those in 

the reference database that the simulated sequences were “BLASTed’ against. I he script then 

returns the abundances (as a text file) of sequences that were correctly mapped to their source
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organisms. II the sequence was mapped incorrectly, it returned the taxonomic rank at which that 

read sequence was assigned.

MEGAN returned the phylogenetic diversity of a given dataset, along with the abundances 

obtained for each taxonomic class. The taxonomic assignments obtained from both applications 

were analysed for sensitivity, specificity and accuracy.

3.7 Accuracy comparisons for MRCA (PPP) and MEGAN
By comparing the predicted taxa with the known taxa at each of the taxonomic levels, the 

sensitivity, specificity and accuracy of both algorithms were assessed as follows.

For a given taxonomic class c, true positives (TP), false positives (FP), false negatives (FN) and 

true negatives (TN) were obtained as explained below;

TPC -number of reads that were correctly classified into class c

FPC -number of reads that were erroneously assigned to class c

FNC -number of reads from class c that were misclassified into some other class d ^ c

For the RefSeq database, all the generated reads essentially belonged to a class in the 

database, thus all those that did not return any hits in a pipeline run were classified as

false negatives

TNC . number of reads that were correctly classified as not belonging to class c

For each of the datasets, false negatives and true negatives were generated by removing the 

sequences corresponding to the input reads from each of the representative databases. I he Perl 

script pseudo_db.pl (Appendix C (iv)) was written and used to construct a decoy database. I he 

script takes as input the original input read sequences (from QSA Read Simulator), and compares 

these against the database from which they were generated. I he script then writes out the 

sequences in the reference database that were not found in the input set. I he sequences are 

formatted for BLAST analysis and uploaded to the databases folder. I his new set of sequences is 

then treated as the new reference database against which the original input reads are searched lor 

similarity. The viral database (decoy virus database) contained a total of 3533 full genome 

sequences after the filtering whereas the prokaryotic database (decoy microbial database) 

contained 2583 genomic sequences. False positives corresponded to the reads that were returned 

as hits (since the source organism sequences had actually been removed from the database) at the
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different taxonomic levels as opposed to true negatives which were the number of reads that 

remained unassigned (lacking from the database, which is expected).

The sensitivity, specificity and accuracy for each of the algorithms were assessed as follows;

Sensitivity measures the proportion of reads that is correctly classified and for a given taxonomic 

class. It is given by;

Sensitivity = TPC/  (TPc+FNJ

Specificity on the other hand measures the reliability of classifications and is defined as; 

Specificity = TNC/  (TNC+ FPC)

The accuracy of a given measurement system is the degree of closeness of measurements of a 

quantity to its actual (true) value. Accuracy is determined by comparing the measurement against 

the true or accepted value and is given by;

Accuracy = TPc + TNC /  (TP c + FPC + FNC + TNJ 

The performance was evaluated at each of the taxonomic levels of species, genus, up to family 

level.

In order to validate the results obtained from the classification accuracy* tests, a nonparametric 

two-tailed z-test (a = 0.05) was run in SPSS 14.0. In all the cases, two hypotheses were 

formulated as follows;

Hypotheses:

Null hypothesis (HO): p 1 -p2 =0

Alternative hypothesis (HI): p 1 -p2 ^ 0

Where pi is the classification accuracy of MF.GAN 

p2 is the classification accuracy of MRCA 

Rejection region:

The null hypothesis would be rejected if/?-va!ue < 0.05.

^Encompasses all the tests i.e sensitivity, specificity and accuracy.
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3.8 The weighted MRCA algorithm
A novel weighted MRCA approach was developed as a number of Perl scripts. The developed 

method was tested against the existing MRCA algorithm in the PPP. During development of the 

weighted MRCA algorithm, the motivation was to improve on the accuracy of taxonomic 

assignment relative to the existing MRCA algorithm. The weighted MRCA strategy utilizes the 

breadth-first search algorithm. Following a BLAST search of the input reads against the database 

of interest, all the equivalent hits to each of the query input reads were examined and a rooted 

taxonomic tree constructed containing the taxonomic assignment for each read. Each terminal 

node in the tree is assigned the bit score from the BLAST result. Each parent node in the tree is 

assigned the sum of the bit scores of its immediate children. A breadth-first search of the tree is 

then performed, from root to tip. The node containing the smallest bit score that is greater than or 

equal to a cut-off bit score (e.g. 2-thirds of the maximum cumulative bit score in the tree) is 

assigned the weighted MRCA for that dataset.

3.8.1 Optimization of bit-score cut-off for the weighted MRCA algorithm

The bit score cut-off was tested on both simulated datasets (viral and prokaryotic genomes) to 

determine at what value the algorithm returned the best overall taxonomic accuracy. I his was 

done by running the algorithm with different values as bit score cut-off and noting the results. 

The percentage bit score value that returned the highest number of positively assigned reads was 

adopted as the bit score cut-off for subsequent runs.

3.9 Evaluation of weighted MRCA algorithm performance against unweighted MRC A
The sequence reads used to test the weighted MRCA were derived from the hits that were

obtained from a pipeline run with the original MRCA, constituting only those that returned four 

or more equivalent hits. This is because if a query sequence read mapped to more than four 

‘equivalent hits’ (i.e. hits passing a threshold percent identity and length cut-off) the taxonomic 

diversity present was sufficiently large to produce an estimated MRCA at ranks higher than 

genera (i.e. family, order, class, phylum and kingdom, whereas taxonomic trees constructed horn 

four or fewer equivalent hits tended to yield MRCA predictions at the rank o f genera or lower.
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I he Perl script get_accession.pl (Appendix C (v)) was written for the purpose of generating the 

reference genome dataset. The script takes as input an array of read ids from the PPP output and 

obtains their original accession numbers and sequence data from the respective RefSeq database. 

For each o f the accession numbers, the corresponding sequence data was obtained and this was 

used as input to the QSA Read Simulator to construct a simulated dataset with the same 

parameters as described above in Section 3.4. The identity of the genome sequence from which 

each read was generated was recorded with the unique read id in order to assess the accuracy of 

the MRCA algorithms. The new dataset was run through the pipeline against both the MRCA 

and weighted MRCA algorithms. The results were analysed using the Perl script ranksjllter.pl 

and the sensitivity, specificity and accuracy are reported.

The nonparametric two-tailed z-test (a = 0.05) was run in SPSS 14.0 in the same manner as 

previously reported. The two hypotheses were formulated as follows;

Hypotheses:

Null hypothesis (HO): p 1 -p2 =0

Alternative hypothesis (HI): pl-p2 ^  0

Where pi is the classification accuracy of MRCA

p2 is the classification accuracy of weighted MRCA 

Rejection region:

The null hypothesis would be rejected if p-value < 0.05.

After testing, the weighted MRCA algorithm was implemented as a function (mrca) in the 

LCA.pm (Appendix C (vi)) module which was loaded in the ppp-backend/lib directory. A 

wrapper script lcawrap.pl (Appendix C (vii)) was written to analyse all of the equivalent hits 

that were obtained from a given pipeline run since the hits obtained from both the MRCA and 

the weighted MRCA were the same (both functions run the same BLAST algorithm, with the 

same parameters), but differ in the way the equivalent hits were treated. The weighted MRC A 

option was exported to the front-end (Figure 4) as a selectable option from a drop-down menu by 

incorporating it in the appropriate scripts in the /var/www/ppp-web/egi-bin directory.
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Figure 4: The weighted MRCA algorithm implemented as a selectable option (right curly brace)
from a drop-down menu alongside the original MRCA algorithm
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CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 RESULTS
Read lengths o f average 206 nucleotides were generated within a given standard deviation (10 

nt) to enable a uniform distribution. All the reads generated were in the range of 162*251 

nucleotides (“random shot-gun reads”). For each of the databases, a total of 10,000 reads were 

randomly generated. The two different datasets were initially run in the pipeline with default cut

off values (PID 80, HSP 40). Sample datasets are presented in Appendix B.

Figure 5 shows an example PPP run with an HSP length of 40 and PID cut-off set at 80 as 

filtering options. This implies that only those sequences that have a similarity spanning over 40 

nucleotide bp and those for which the percent identity is over 80% will be considered as “hits” to 

the query sequence read in question.
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Figure 5: Screenshot o f the PPP showing an example pipeline run.
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Following a BLAST search and additional taxonomic classification, the MRCA was obtained in 

the example above as “Orthopoxvirus” (from the description tab). This taxonomic assignment is 

at a genus rank which is an informative label, although a more specific assignment at a species 

rank would have been preferred. This however is a narrow taxonomic label and more laboratory 

experiments can be done as a follow-up to confirm which species in the Orthopoxvirus genus is 

the source organism from which the metagenomic dataset was obtained.

4.1.1 Accuracy comparison between MEGAN and MRCA algorithm

Table 1: Classification performance of MEGAN and MRCA for the simulated RefSeq prokaryotic
database

MEGAN MRCA

Species Genus Family Species Genus Family

Sensitivity (%) 82.3** 89.9** 95.4 83.3** 90.6** 97.5

Specificity (%) 95.2** 93.1** 89.7** 95.8** 94.3** 90.2**

Accuracy (%) 83.3 85.2 92.1** 87.4 93.6 96.5**

** ^-values obtained were greater than /?=0.05 (0.063-0.862)

More than 65% (indicated by asterisk) of the observed classification accuracies had /7-values > 

0.05 = a.

4.1.2 Testing the weighted MRCA algorithm

The developed weighted MRCA algorithm was tested on a simulated viral dataset and the 

illustration shows the taxonomic tree that was generated from the pipeline run. I he different 

taxonomic ranks at which both the MRCA (original algorithm) and the weighted MRCA 

assigned the query dataset are indicated (with arrows) on the figure.
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Figure 6: Illustration o f the weighted MRCA algorithm

The numbers in the figure show example bit scores obtained from a pipeline BLAS I search, the 

text shows the corresponding taxonomic assignment. In this example, the bit score cut-off was 

set at 6000 and the weighted MRCA algorithm classified the input metagenome as belonging to 

the family o f Caudovirales, [the last node (descending from root to tip) with a bit score value 

that is above the cut-off, and one for which all the children’s nodes have bit scores lower than the 

cut-off]. The original MRCA however returned Viruses as the taxonomic group to which the 

input belongs. In this case, the weighted MRC A gives the taxonomic rank as family , a more
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specific and informative assignment than the unweighted MRCA (Rank is Viruses which is at a 

“phylum level”).

4.1.3 Optimization of the bit score cut off for the weighted MRCA algorithm

Both simulated viral and prokaryotic datasets were run in the pipeline with the weighted MRCA 

as the algorithm of choice. In both cases, the percentage values used as the bit score cut off were 

varied while noting the results (Figure 7). The accuracy at a given value was determined by 

calculating the percentage of reads that the pipeline correctly assigned, as seen from the 

respective RefSeq databases. It was observed that the highest accuracy was obtained at 60% of 

the root bit score and this value adopted for all the subsequent tests.

Figure 7: Optimisation o f  the hit score cut off for the weighted MRC ’A algorithm

Another example analysis in which both the MRCA and the weighted MRC A were employed in 

just one pipeline run (Step 0- MRCA, Step I- weighted MRCA) is shown in f igure 8. In this 

case, both methods yielded the same number of hits but the equivalent hits tor each of the 

sequence reads were different. The appropriate Perl scripts were used to extract the specific 

taxonomic assignments at each of the steps. The accuracy of these assignments was tabulated in

the Table 2.
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Figure it: Screenshot o f an example PPP run showing both the MRC A ami the weighted MRC A

4.1.4 Accuracy comparison of MRCA and weighted MRCA on simulated metagenomes

Table 2: Classification performance o f  MRCA and weighted MRCA for the simulated RefSeq
viral database

MRCA Weighted MRCA

Species Genus Family Species Genus Family

Sensitivity (%) 87.3** 91.9** 93.4** 88.3** 92.5** 95.5**

Specificity (%) 89.2** 90.3** 93.6** 92.8** 94.5** 97.1**

Accuracy (%) 88.0** 91.5** 93.1** 91.6** 93.8** 96.3**

:t ^-values were 0.045 (z=1.70) and 0.023 (z=1.99) for species and genus respectively (a= 0.05) 

**/?-values < 0.05 (0.039-0.004)
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Table 3: Classification performance of MRCA and weighted MRCA for the simulated RefSeq
prokaryotic database

MRCA Weighted MRCA

Species Genus Family Species Genus Family

Sensitivity (%) 92.2** 96.9** 97.3** 97.0** 97.2:: 97.4**

Specificity (%) 78.6** 80.1** 85.4** 93.2** 95.8** 98.2**

Accuracy (%) 86.4** 91.0** 92.1** 94.8** 96.1** 98.0**

*7?-values were 0.049 (z= 1.65) and p 0.026 (z 1.94) for genus and family respectively. 

**/?-values ranged from 0.014-0.003.

At a= 0.05 significance level, all the /7-values obtained for this prokaryotic dataset were below 

the significance level.

Species Genus Family

Taxonomic rank

■ megan

■ mrca

■ weighted mrca

Figure 9: The sensitivity o f the three methods generated from the simulated prokaryotic
dataset consisting 5458 distinct species from the NCB1 Refseq database
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4.2 DISCUSSION
For the simulated prokaryotic database dataset, MEGAN and MRCA were comparable, 

achieving high percentage classification accuracy (82.3-97.5%). With MEGAN, the high rate of 

false negatives resulting from the removal of the species sequences, led to a low percentage in 

accuracy (/?=0.076). Though it was logical to expect a progressive increase of the cumulative 

percentage of assignments as one moves from specific taxonomic ranks (species, genus) to 

higher taxonomic ranks (e.g. phylum), it is observed from Table 1 that both methods have a 

lower cumulative percentage o f  assignments at the family level as compared to that at the genus 

level in terms of specificity. This was because some species as they were being mapped up in the 

taxonomy tree, the naming scheme used was different from what was used at species level, thus 

some of these sequences would be returned as “no rank” in the analysis scripts. This contributes 

to a high number of TN in the sample dataset, as this is the main parameter that influences 

specificity. In future analyses, Perl scripts could be used to eliminate this inconsistency. These 

would extract the header sequence information then format all sequences in such a way that there 

is uniformity in all the headers.

From the same table, it was seen that more than 65% of the observed classification accuracies 

had /7-values > 0.05 = a. This general trend was evidence that we do not reject the null 

hypothesis that the difference between the classification accuracy of MEGAN and that of MRCA 

is equal to zero.

The side-by-side analysis in which both the MRCA and the weighted MRCA are employed in 

the same pipeline run allows for minimising of computational time and resources, which is 

usually a bottleneck in most metagenomic analyses. The idea of a “processing pipeline” allows 

for making choices about which “steps” to be carried out and which programs to use (Wu et al., 

2008). Sequence comparison based approaches typically make use of the best BLAST hit 

obtained from a BLAST search of the environmental query sequence against a relerence 

database. Filtering by significance of similarity for example based on percent identity, bit score 

or E-value leaves only the subject sequences that are more related to the query environmental 

sequence. A taxonomy id assigned to the query based on the taxonomic classification of the 

corresponding best BLAST hit thus provides a corresponding taxonomic profile of the 

environmental sample. This approach has several advantages including the low computational
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effort (if the environmental query dataset is not too large), and the use of all known genes as 

reference (from the RefSeq database in this case) (Bork et al.% 2007)

There was an improvement in taxonomic assignment at all ranks between MRCA and weighted 

MRCA algorithms for the viral simulated dataset. This is seen from Table 2 where the 

sensitivity values for the weighted MRCA algorithm are higher than those for the MRCA 

algorithm. The assignment of reads to a specific sub group within the bit score cut-off 

significantly contributes to this scenario. In some cases, the p-values are as low as 0.004 at 

species level which demonstrates that the two methods are significantly different (at a 

significance level of a= 0.05) in taxonomic classification performance. The reliability of the 

assignments is equally high as can be seen from the specificity values.

The accuracy with which the weighted MRCA assigns the viral query reads to the various taxa is 

higher than that for the MRCA algorithm. This is attributed to the fact that the algorithm restricts 

taxonomic assignment to levels of the sub tree where in all the children nodes are above a certain 

cut off. This ensures that the more general assignments, as long they have fewer representation 

which is manifested in the low values of bit scores are not considered for the final taxonomic 

assignment.

The sensitivity values obtained for the simulated prokaryotic metagenomic dataset in Table 3 are 

considerably high compared to those observed for the viral dataset. This is attributed to the fact 

that more prokaryotic genomes have been sequenced and are available in the reference database 

that was used for simulations. There were more distinct taxonomy ids for the prokaryotic 

database (5458) than for the viral database (2506), implying that the process of generation of test 

sequence data had more representation in the former. These distinct taxonomy ids represent 

organisms for which a substantial amount of sequence data is available as determined by the 

NCBI Taxonomy group. Also, the proportion of correctly classified sequence reads as seen from 

the sensitivity was higher for the weighted MRCA than for the unweighted MRCA. I his 

demonstrates the ability and discriminatory power of the weighted algorithm compared to the 

original method that was used in the PPP. The accuracy values (Figure 10) obtained account for 

how well this assignment is close to the actual (true) value, and it can be seen from the table that 

94.8% (at the rank of species) of the input dataset was correctly assigned by the weighted
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MRCA, compared to 86.4% attained by the unweighted MRCA. At the a = 0.05 level of 

significance, there is enough evidence to conclude (Table 3) that there is a difference in the 

classification performance of the two methods; MRCA and weighted MRCA. All the />values 

obtained are below 0.05 (0.014-0.003), thus we reject the null hypothesis that the difference 

between the classification accuracy of MRCA and that of weighted MRCA is equal to zero.

The accuracy of assignments improves greatly as one moves higher up the taxonomy tree (i.e. 

from species to family). This is expected since some organisms may have only been 

characterised up to the taxonomic ranks of genus or family, but not at a species level.

A great number of metagenomic samples are derived from previously uncharacterized (“virgin") 

habitats, for which no prior sequence information is present in genome sequence repositories 

(Yooseph et al., 2007). For this reason, a similarity search may not always generate the desired 

result but rather an approximation to the actual solution. The ability to design algorithms or 

methods that are able to discriminate against sequences and logically place them into taxonomic 

groupings is a desirable property and an important task for any metagenomic analysis (Huson et 

al., 2009). A metagenome includes a massive diversity of microorganisms originating from a 

particular environment, with complex interactions between and within species. As such, 

information about the genetic variation of each of the species and its significance within the 

ecosystem is unknown (Wooley et al., 2010).

In the context of our original goal (improving taxonomic assignment accuracy), what we 

ultimately want to do is to place the reads as accurately and reliably as possible in the taxonomic 

tree so the results are as informative as possible. Candidate pathogens can be identified and 

confirmed with experimental tests. Regardless of the method used, having assignments collapse 

back to the genus or family level is not desirable if a species level determination could have been 

possible. It was also observed that during pipeline runs, BLASI low-complexity filtering 

rendered the weighted MRCA algorithm less rigorous by drastically reducing the number ol hits 

of a given input set against the same database. Since these short sequences had been simulated in 

a way that minimized complexity, this option was turned olf in subsequent pipeline runs with the 

weighted MRCA.
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The weighted MRCA approach implemented in the pipeline demonstrates the ability to improve 

this taxonomic mapping by just taking into consideration the bit score of a given read in the 

context of the overall dataset. In contrast to MEGAN and the previous MRCA approaches 

(Figure 10), the MRCA when calculated sometimes leads to a more general taxonomic 

assignment. This arises as a result of a few reads belonging to an outlier taxon (with high bit 

scores) biasing the assignment to a much higher level in the taxonomic tree.

Among the two approaches tested (MEGAN, MRCA), the weighted MRCA approach provides a 

better assignment at all taxonomic levels (Figure 9, 10). From our simulations, in the worst case, 

the algorithm would perform exactly as the original unweighted MRCA algorithm but never 

worse. Although not all assignments are resolved to the species and genus levels, the approach 

immensely reduces taxonomic mapping at “no rank’’ which was the biggest problem with the 

original MRCA method.

Metagenomic data with its diversity in terms of microbial origin normally consists of organisms 

from all domains of life. The sequence databases that are searched against are usually large and 

with more organisms being sequenced and deposited in these databases (Messing and Llaca, 

1998), the computational time and cost of an analysis is overwhelming. It was thus imperative to 

assess the classification performance of the methods analyzed in this study on taxonomic 

accuracy, rather than computational time.

The QSA Read simulator is designed as a procedure that relies on a random number generator, 

which makes it almost impossible to generate the same metagenome sequence more than once. 

Additionally, all the sequencing errors (insertions, deletions, substitutions and inversions) that 

would normally be found in an experimental dataset were modelled into the application. 

Abundance files were also provided to guide the program on diversity of the dillerent 

metagenomes expected. This was a key safeguard against biases, over fitting and uneven 

distribution of genome sequences or clustering in a single genome class.
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CHAPTER FIVE: CONCLUSION

5.1 Research contributions
This work has shown that the weighted MRCA algorithm improves taxonomic assignment 

accuracy for unknown metagenomic reads. This demonstrates that rather than just mapping reads 

to their most recent common ancestor, summing up the bit scores and applying the weighting 

while maintaining mapping to a higher level, improves taxonomic assignments. On average, 

92.8% specificity was obtained at species specific clustering for both prokaryotic and viral 

simulated data sets, compared to 89.2 % obtained using the other methods. These results showed 

an improved mapping of up to 3.6% for viral sequences and 8.4% for the prokaryotic sequences 

at the species level. MRCA calculations are greatly affected by assignments where for example 

one read is mapped in the NCBI taxonomy database with a high bit score yet this comprises a 

very small percentage in terms of the overall sample dataset. In all the simulated datasets, the 

weighted MRCA algorithm performed significantly better than MEGAN and the unweighted 

MRCA.

The weighted MRCA algorithm has been tested and implemented in the Pathogen Profiling 

Pipeline, a diagnostic tool that helps to inform researchers and the public community about 

possible causative pathogens during a disease outbreak. In the context of environmental science 

and medicine, the 3.6 and 8.4% improvement is highly significant as it informs key decisions in 

public health.

The application (weighted MRCA) was designed as a function that can be called from a module, 

thus facilitating portability and re-usability. All the Perl scripts can be customized to run on any 

Linux platform that meets the other dependences, like Bioperl, CPAN modules as would be 

required. Since the PPP software has been developed to be open source, this study has 

contributed to community software specific for bioinformatics. I his research has also 

contributed to more accurate analysis and reporting of likely pathogenic microbes in a given 

metagenomic sample.
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5.2 Limitations

Although the weighted MRCA achieved higher taxonomic classification accuracy compared to 

the original algorithm and MEGAN, other aspects like horizontal gene transfer (HGT) across 

species could not be assessed. Like with ail other metagenomics analysis projects, the database 

limitation was a big challenge. This is because only those sequences for which close relatives 

exist in the database are likely to be mapped in the taxonomic tree (return BLAST hits). This in 

many cases implies that if a new organism is sequenced (as with all metagenomics projects) and 

no close relatives are present in the database, that sequence read will be returned as 

“Unassigned”. This however, would not mean that the given sequence read does not have any 

taxonomic label, but that the taxonomic label is unknown to the method being used for 

taxonomic classification. Research is still ongoing to find ways of circumventing this database 

limitation (Huson et al.y 2009).

Simulations of metagenomic datasets are cheap, quick and easy. These provide a reliable 

estimate o f what a pyrosequencing dataset would look like, if pyrosequencing errors and other 

factors that affect pyrosequencing data are taken into account during the simulations. Real 

laboratory metagenomic data, sampled from a known environment would provide a more 

realistic analysis of the taxonomic classification accuracy in that microbial population sample. 

This is because the environments from which these data are obtained tend to contribute to their 

diversity, a factor that is not accounted for in simulated datasets. However, the true taxonomic 

diversity present in a real sample is not known and therefore the accuracy ol the taxonomic 

assignment approaches studied here cannot be addressed. The study was thus limited by the 

artificial nature of the simulated read sets; however, this was necessary to properly assess the 

taxonomic accuracy of the different taxonomic assignment approaches.

However, real laboratory metagenomic data, sampled from a known environment would provide 

a better analysis of the taxonomic diversity in that microbial population sample. I his is because 

the environments from which these data are obtained tend to contribute to their diversity, a factor 

that is not accounted for in simulated datasets. The study was thus limited by the inability to 

make replicates in the simulations.
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5.3 Recommendations for further research
The progress made during this study lends strong support for further analysis that includes 

closely examining each of the equivalent hits (for any read) in a given taxonomic sub tree (where 

the weighted MRCA maps). If the specific gene that the read mapped to could be captured, then 

a further analysis of this gene would reveal whether it is informative or not. Some genes are 

virtually everywhere, so such a revelation would be abandoned.

Since the data used was largely simulated, laboratory metagenomic datasets could be analyzed 

using the same algorithm in order to ascertain reproducibility, when a real (experimental) 

metagenome is used. This was because there were some outlier data samples that could not be 

considered for the final taxonomic assignments.

From the observed classification accuracies (~86-90%), this work lays a strong foundation lor 

upscaling the accuracy of the clusters towards 100%. In future analyses, with experimental 

metagenomic datasets, this could be easily achieved.
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CHAPTER SEVEN: APPENDICES

7.1 Appendix A

i) Installing and setting up the Pathogen Profiling Pipeline (PPP)

PPP was downloaded from: http://www.corefacility.ca/ppp 

The download contained 2 program directories:

• ppp-backend - Filtering and execution management software

• ppp-web - The web front

From the README in ppp.tar.gz the following software requirements had to be met namely;

Compute cluster:
- BLAST
- BioPerl —  1.5 or newer
- DRMAA compliant scheduler —  Sun Grid Engine suggested

Web server:
- Apache2
- Mod-Perl
- BioPerl —  1.5 or newer
- Graphviz

BLAST installation
The latest BLAST version was downloaded, installed and configured thus

$ cd $HOME/Downloadswget ftp://ftp.ncbi.nih.gov/hlast/executables/release/LATEST/blast2
2.2.23-x64-linux.tar.gz # as of May 05, 2010.
siido tar xfv blast-2.2.23-x64-linux. tar.gz -C /usr/local && \ 
sudo In -s /usr/local/biast-2.2.23 /usr/local/blast .

The B L A S T M A T  and B L A S T D IR  environment variables were added to the / e t c / b a s h . b a s h r e  

file
$ sudoedit /etc/bash.bashre

The bashre was modified like this:
PATH=/usr/local/blast/bin:$PATH
BLA3TMAT=/usr/local/blast/data 
BLASTDIR=/usr/local/blast/bin
export BLASTMAT BLASTDIR PATH

Now source the bashre file and test that blast is in the path.
$ source /etc/bash.bashre && which blastall
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/ u s r / l o c a l / b i a s  t / b i n / b l a s t a l l

Installing BioPerl

BioPerl heavily depends on the Perl programming language itself. Ubuntu (v 10.04) already 

comes with the latest version of Perl (5.10.1). The latest version of BioPerl was downloaded 

from http://www.bioperl.org/wiki/Installing Bioperl for Unix.

This was unpacked like so;
$ tar xvfz BioPerl-1.6.1.tar.gz
$ cd BioPerl-1.6.0

And built using these commands

$ perl Build. PL 
$ sudo ./Build test 
$ sudo ./Build install

Installation and Configuration of the head node —Web server
The Apache2 web server was downloaded and installed from http://httpd.apache.org/. Mod-perl 

was installed from the Yum Package Manager. Yum is an automatic updater and package 

installer/remover for RPM systems. It automatically computes dependencies and figures out what 

things should occur to install packages. It makes it easier to maintain groups of machines without 

having to manually update each one using rpm.

Graphviz was downloaded from http://www.graphviz.org/Download linux rheL.php and copied

to /etc/yum.repos.d/ .
The install was done thus

$ sudo yum install 'graphviz*'
Configuring Perl modules
Since PPP's web interface requires XML::Simple, the module was installed from yum.

$ sudo yum install perl-XML-Simple

. • / •’ •
PPP's DRMAA scheduler
The PPP interacts with the scheduler software thus the need for a binding to the DRMAA.
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DRMAA is an Application Programming Interface (API) for job scheduling. Sun Grid Engine is

DRMAA compliant, but it needs the help of a Perl module. DRMAA was compiled from source

because we need to tell it where to look to find the C headers for SGE’s drmaa support.

Schedule/DRMAAc was downloaded from CPAN:
http://search.cpan.0rg/CPAN/authors/id/T/TH/THARSCH/Schedule-DRMAAc-O.8 l .tar.gz.
From the README, the environment for compiling the Perl module was prepared like so:

$ source /opt/gridengine/default/common/settings. sh
$ export LD_LIBRARY_PATH=$SGE_ROOT/lib/'$SGE_ROOT/util/arch'
$ In -s $SGE_ROOT/include/drmaa.h

Build and install the Perl module:

$ perl Makefile.PL 
$ make 
$ make test 
$ sudo make install

PPP Backend

An appropriate directory was chosen for the PPP management software to run and the contents 

of the ppp-backend folder copied to this location. The binary directories were placed in a shared 

location such that they could be accessed by all nodes in the cluster. 1 he location chosen was the 

/opt directory.

Install PPP

PPP's Perl scripts need to be accessible to all nodes, so the directory was changed to somewhere
accessible:

$ cd /opt 
$ sudo mkdir apps 
$ cd apps

Unzip PPP:

$ tar -zxf ppp.tar.gz

From the README, the install instructions in INSTALL.PDF were followed thus ... In a 
nutshell:

$ cd ppp-backend
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Data Directories

The following directories required by the PPP were created inside the ppp-backend directory.

• data - the directory where input data files are stored

• db - the base directory to the database repository

• scratch - the working and storage directory for all running and completed executions

• taxon - a location for the NCBI taxonomy databases

$ mkdir db scratch data 

Taxonomy databases

In order to use some advanced features that the PPP offers, such as the most recent common 

ancestor calculations, the latest taxonomy databases were downloaded from the NC B1 s \ I P site, 

ftp://ftp.ncbi.nih.gov/pub/taxonomv/taxdump.tar.Kz
$ wget ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
$ cd taxon
$ tar zxf taxdump.tar.gz

From the taxon folder, the taxonomy databases were formatted using the taxonformat.pl script 

from Tom Matthews (PPP developer):

#!/usr/bin/perl

use Bio::DB::Taxonomy; 
use Bio::Taxonomy::Taxon; 
use FindBin; 
use strict;

my $taxondir = $FindBin::Bin; 
if(!-d $taxondir)
{

die "$taxondir is not a directory";
}
if(!-e "$taxondir/nodes")

print "It doesn't look like $taxondir is formatted. Formatting
$taxondir\n";
}
my $db = new Bio::DB::Taxonomy(-source => 'flatfile',
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-directory => $taxondir,
-nodesfile => "$taxondir/nodes.dmp",
-namesfile => "$taxondir/names.dmp");

if(-e "$taxondir/nodes" && -e "$taxondir/id2namesM && -e "$taxondir/names2id"
&& -e "$taxondir/parents")
{

print "Success! Taxonomy directory $taxondir appers to be properly
formatted.\n";
}
else
{

print "There may be an error. Check to ensure that $taxondir has the 
extracted taxonomy database and try again\n";
}

PPP Configuration
The configuration file for the pipeline, ppp-backend/conf/local.conf was edited to reflect the 

locations of software in the installation.

• blast loc - the path to the blastall executable

• formatdb - the path to the formatdb executable

• bp_index_loc - the path to bp_index.pl

• root path - the full path to the ppp-backend/bin directory

• num segments - the number of segments the clustered execution will be split into. 

This was set around 2-3 times the number of CPU cores in the cluster. I he larger this value is 

set, the more evenly work will be distributed over the cluster nodes, but this also increases the 

overhead time of waiting on the scheduler.

Static Job Setup
This was set up in the ppp-backend/bin/ directory and the script customjob.pl run with no 

arguments. The output o f this file was placed in the ppp-backend/conf/ directory in a file 

jobs.xml.
$ perl bin/customjob.pi > conf/jobs.xml

PPP Web Front
The PPP is designed such that the analysis steps are done only on the back-end, so the web 

server should not need to do any particularly heavy work.
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PPP Software

The software was installed in Apache’s web root under its own directory i.e, /var/www/ppp-web 

and the permissions configured. A connection was created to the PPP back-end folder by making

a symbolic link.
$ sudo cp -R ppp-web/ /var/www/ppp-web/
$ sudo In -s /opt/apps/ppp-backend /var/www/ppp-web/ppp

Apache configuration
Apache's config file was edited to load PPP as Perl scripts. A new file

/etc/httpd/conf. d/ppp-web. conf W 3 S  Created:

<IfModule mod_perl.c>
<Directory "/var/www/html/ppp-web">

AllowOverride None 
Order allow,deny 
allow from all
AddHandler perl-script cgi-script .cgi .pi 
Options None 

</Directory>

<Directory "/var/www/html/ppp-web/cgi-bin">
AllowOverride None
Options +ExecCGI -Multiviews +SymLinksIfOwnerMatch 
Order allow,deny 
Allow from all 
SetHandler perl-script
PerlResponseHandler ModPerl::Registry

</Directory>
</IfModule>

Restart Apache:

$sudo apachectl restart

The permissions on everything were changed so that Apache's user can rcad/vvrite:

$ sudo chown -R root:apache *
$ sudo chmod -R g+w *

Test! http://hpc.ilri.cgiar.org/ppp-web/cgi-bin/pppwebiBl

If there are any errors, check the Apache error_log.
If it worked, the job manager is started thus (from the ppp-backend/bin directory):
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$ cd bin
$ perl drmaamanager.pl -v 
> Job manager initilized...

Now PPP's web interface should indicate that there is a job server running (green circle!)

Porting data into the PPP
For testing, sequence data was obtained from ftp://ftp.ncbi.nih.gov/refseq/release/microbial/ for 

the microbial NCBI FTP sequences site and ftp://ftp.ncbi.nih.gov/refseq/release/viral/ for viral 

sequence data, uploaded into PPP using the web interface and formatted for BLAST using 

formatdb utility.

Creating BLASTable databases

The database files after being downloaded were concatenated thus;

$ cat *.fna > microbial.fna (for refmicrobial database)

The concatenated database files were blast-formatted using the command

$ formatdb -i microbial. fna -p F
A Bioperl index was created by selecting the “Bioperl index button this option was already 

implemented in the PPP

Managing the pipeline

Manually adding databases

• Add the FASTA files to your 'db' directory.

• Format the database with the formatdb utility included with BLAST. The command 

"formatdb — help" provides you with the appropriate arguments.

• If you would like a BioPerl index, you can also make it manually. Running 

"bp_index.pl" with no arguments will provide you with a perldoc page for the script,

$ bp_index.pl -dir < fu ll path to database directory> 
microbial.fna.idx microbial.fna
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A dding Input Files

From the Administration page, click the Upload Files button. From here adding input files is

very similar to adding databases.

Again note that you can manually add the files to your data directory from the command line if 

you wish. Seeing they don't need to be formatted, they will be ready to use as soon as they are 

placed in the appropriate directory.

T roubleshooting

C H EC K  THIS FIRST - If a problem occurred with the entry point script it may have locked the 

job cache. Ensure "ppp.pl" is not running on the web server or head cluster node, then remove 

the "ppp-backend/cache/jobcache.lock" file if it exists. This may resolve all kinds of problems.

Job m anager e r ro r  message: Could not contact DRM system - Your scheduler is not started. If 

using SGE, you need to start "sge execd" on all execution hosts and "sge qmaster" and 

"sge_schedd" on your submit host (head node).

W eb front not displaying or trying to download pages - The apache2 configuration isn't 

properly set up. Check that the "ppp-web" apache2 configuration file is in apache2's "sites- 

available" folder and linked in "sites-enabled". Also ensure ModPerl (libapache2-mod-per!2) is 

installed. Finally, restart apache2 (apache2ctl restart).

Subm itted jobs are  not picked up by job manager - Check first that the job cache files are 

being created in "ppp-backend/cache". They will have the form "##.exec". If the files don't exist, 

it is probably a permissions problem. Ensure the apache2 web user has read/write access to the 

"ppp-backend/bin" and "ppp-backend/cache" folders.

Filtering jobs not producing results or immediately failing - Your paths may be set up wrong 

in the local configuration file. Look at "ppp-backend/conf/local.conf' and ensure all paths are set 

up correctly. Also, Sun Grid Engine may be failing. Check your 

gridengine/default/qmaster/messages file for a diagnosis of failing jobs.

Jobs appear to be running but producing no results - Again probably a permissions problem. 

Your web server is writing the job information, but the user running the execution jobs may not 

have read/write permissions to the scratch folders.
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ii) Installation of MEGAN
MEGAN is written in Java and requires a Java runtime environment (JRE). The latest JRL was 

installed thus alongside its dependences;

$ sudo apt-get install sun-java6-fonts sun-java6-jdk sun-java6-jre sun- 
java6-plugin sun-java6-source

Navigate to the directory where MEGAN was downloaded to;
$ cd ~/apps

The MEGAN installer shell script was executed as follows;
$ sh MEGAN_unix_3_9.sh

testing JVM in /u sr...

Starting Installer...

After installation was completed, navigate to the directory in question
$ cd megan

The application was initiated as follows;
$ ./MEGAN

iii) The QSA Read simulator
The application was designed to be run on a modern Linux platform and required the following

packages:

• Perl

• BioPerl, both of which were already installed.

The directory containing the application was obtained and placed in the applications folder, on a 

location on the computer from which the application was run. The QSA Read Simulator was 

initiated as follows and below shows the usage statement that details the options available.

$ cd ~/apps/QSAreadsim 
$ ./readsim.pl

QSA Read Simulator - readsim.pl
Generates a simulated pyrosequencing dataset from one or more genomic PASTA sequences 

Arguments:
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-r | —reads: FASTA file of input reads to sample

-11 —lengths: Average length of generated reads

OR file containing input read lengths 

-d | —stdev: Standard deviation of generated read length 

-c | —coverage: Coverage depth to emulate over all input reads 

-a | —abundfile: File of sequence abundances. Abundance format described above 

-i | -id-prefix: Output read name prefix. Valid characters: letters, numbers, 

dashes, underscores

-n | —numreads: Number of reads to generate (This option will take priority over

coverage)

-o | —output: Output fasta file

-p | —processes: Number of processes to run (default 1)

-no-errors: Do not generate any errors 

-no-mates: Do not generate any mate-pair information
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7.2 Appendix B: Simulated test data
Sample simulated data were generated by running this command. For example to generate 10000 

sequence reads o f average length 206 within a standard deviation of 10 and output them into a 

file, rather than displaying in the command prompt window.

$ , / r e a d s i m . p l  - r  / h o m e / h e l l e n / a p p s / d a t a / r e f m i c r o b i a l . fn a  -1  206 -d  10 

- i  RM -n  10000 -o  s im r e f m ic r o b ia l_ m ic r o b ia l_ r e a d s . fn a

Sample output data generated from running this command

$ l e s s  ~ / a p p s / d a t a / s i m r e f m i c r o b i a l _ m i c r o b i a l _ r e a d s . fn a  

>RM00001 NC 004310 location:234347-234153

GAAGGGCGCTGCCGGTGCTCGATGAANACGGCCGATCGCTTTGGCCGCGTGACATTGGAA

AAGCTACTGCATCAGGCAGAGCGCCCGGCATGAAGCTTTTCCTTTCCCTGTTTCCGCGCA

TGGTGCTTGTGGCGGTGCTGCTGCTCTTTCTCCTGCACCCGCATCTTTTCGAGCCGGTTT

TCCGCCCGTTCGTCN

>RM00002 NC 011333 location:507813-508017

ATTATGAAACACAACTTCTTACTTATAAATGGTGTTTTCTGCGATAGGTACGGAAAACCT

TTAAAAGGTGCGGCTCTGTATAATGCTAAAGCAGCATATTTGAATGGCGGTCTTAAGCAG

ACCTTAGATCAGATTGAAAGACTTAAAGATGAAAACAAGGGACTTAATGAAGCACTTTAT

TATTCC ACTTTCTCTA ACTCGA AC 

>RM00003 NC 013342 location: 10881-11087

TGCTCCCGTTTTGTNTCA AATTTGGA AG A A A A AACATA AAAA AGCGT ATT ATA AGTGGCG 

TGTTGATGAGACATATATCAAAATTAAAGGACAGTGGTGTTATCTGTATCGCGCGA TT GA 

TGCAGATGGACATACATTAGATATTTGGTTGCGTAAGCAACGAGAT A ATCATTCAGCA1A 

TGCGTTTATCAAACGTCTCATTAAACA 

>RM00004 NC_001849 location: 11033-11224

TGCTATTTGATTTAGTAGCCTGTGTTGTGATTGATCTTTCAATTn ATTGATGGCTT GTA
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AATTTTTGATTCATTTTTGAATTTCTTTAATTTTCTTCTGCAGTTGGTTCATAATTTATC

CNTTTTTTAATCT

>RM00005 NC 005324 location: 1321-1534

GCCGTCAATCCCGACTTCTTACCGGACGAGGACAAGAGTACGCCGCAGCTCGATCTTTTG

GCTCGTGTCGAACGAGAGCTACCGGTGCGGCTCGACCAAGAGCGCACCGATATGGTTGTT

TGCCATGGTGATCCCTGCATGCCGAACTTCATGGTGGACCCTAAAACTCTTCAATGCACG

GGTCTGATCGACCTTGGGCGGCTTGGAACAGGCAN

>RM00006 NC_013653 location: 18689-18890

ACTTATTTCGTCCCCTACCTCATAGGATTCTTGATATAAATGTTTTAAATCATTGTTATC

ACTATAATCAAAGTCATATTCACTCAATAATTTCTTTTTGAATAGCCCCAAGTACAAATT

TATCATGCTG ATTTTTATTAGGTTTAA ATTCTTTTTCTTGTA ACA ACTTA ACTTGTTCAG

TATATATTTTCTATCTTCACA

>RM00007 NC 013334 location:3979-4206

CCTTAAATTACTCTTTGANGCCAGCGACTAATNATAGACAAGCATTAATCCGCAAGAAGC

AACCTTTTACTGAAGAATATCAAAAAGCAACCAACAACAAAAGAAAATACAACCAATAGA

AGCAAATTAAATCATAAGGGCNTAAACTAAAGCGGAAAAAGGANGACAGTGCAAACGAAG

ACGTATTAAAGAGAGATTGATAAAACTANCTGAAAAAAACGAGNGTGGACCCT
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7.3 Appendix B: Scripts

i) dl.pl

#!/usr/bin/perl
#dl. pi downloads a given database unattended from refseq
use strict;

for(my $i=l;$i<=65;$i++)
{

my $cmd = "wget
ftp: //ftp.ncbi . nih. gov/refseq/release/microbial/microbial$i .genomic.gbf f . gz

print "$cmd\n"; 
system($cmd);
$cmd = "gunzip microbial$i .genomic, gbf f.gz ;
system($cmd);
$cmd = "perl /home/hellen/apps/scripts/convert .pi -i

microbial$i .genomic.gbff -o microbial$i. fna -t fasta ,
system($cmd);

}
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ii) convert.pl

#!/usr/bin/perl
fconvert.pl converts a genbank file into fasta format
use Bio::Seq; 
use Bio::SeqIO; 
use Getopt::Long; 
use strict;

my ($fname,$outtype,$outfile);
Getopt::Long::Configure ('bundling');
GetOptions (

"i|input=s"=>\$fname/
"t|type=s"=>\$outtype/
”o|fileout=s"=>\$outfile

);
if(!$fname || !$outtype || !$outfile)
{

print "require -i -t -o\n"; 
exit;

}

my $ input — Bio: : SeqIO->new (—f ile=>$fname, _format-> genbank )/
my $output = Bio::SeqIO->new(-file=>">$outfile",-format=>$outtype);
my $count = 0; 
my $time = time;

while(my $seq = $input->next_seq)
{

if($outtype eq 'fasta')
{

my $descline = $ s e q - > d e s c . "  (". $ s e q - > s p e c ie s - > n o d e _ n a m e . 

$seq->desc($descline);
}
$output->write_seq($seq) ;

$count++;
i f ( $ c o u n t % 1 0 0 0  == 0)
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{
$time = time - $time;
my $sps = 1000/$time;
print "Analyzed $count entries ■
$time = time;

}

- $sps/second\n";

}
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iii) ranks_filter.pl

* ! / u s r / b i n / p e r l

♦ranks_filter.pl t a k e s  a ppp output hits file,compares it with the original
♦ i n p u t  file t o  g e t  th e  accession numbers.The script then searches the index
♦ database f i l e  f o r  th e  matching accession nos and returns the corresponding
♦ r a n k

u s e  G e t o p t : : L o ng ;

u s e  B io : :S e q I O ;

u s e  B i o : : I n d e x : : F a s t a ;

u s e  B io : :D B : : Taxonom y;

u s e  B i o : : T ax o n o m y :: Taxon;

u s e  s t r i c t ;

u s e  w a r n in g s ;

my ( $ i n f i l e ,  $ p p p in p u t ,  $ i n d e x f i l e ,  $ h e lp  ) ;  

G e t O p t i o n s (

'i|infile=s'
'p|ppp_input_file=s' 
'd|indexfile=s'
•h|help'

=> \ $ i n f i l e ,

=> \ $ p p p in p u t , 

=> \ $ i n d e x f i l e ,  

=> \$ h e lp

) ;
c h e c k _ in p u t s  ( $ i n f i l e ,  $ p p p in p u t ,  $ i n d e x f i l e ,  $ h e lp  ) ;  

o p e n (INFILE, " $ i n f i l e " ) ;  

my %names; 

w h i le  (<INFILE>)

chomp;
if(/A\>(\S+) (.*) r a n k = \ [[A\]]*\](•*)$/)
{

my $name = $ 1 ; 

my $ d e s c  = $ 3 ;

$ d e s c  =~ s / A\ s / / g ;

$nam es{$nam e} = $ d e s c ;

}
}
my $ t e s t ; # j u s t  a  f l a g

72



my %id_list = match_ids();
my $index = Bio: : Index:: Fasta->new(-filename -> $indexfile);
my $taxondir = "/opt/apps/ppp-backend/taxon";

♦create taxonomy outside the foreach loop, so that it doesnt do this every
t ime
my $db = new Bio:: DB::Taxonomy {

-source => 'flatfile',
-directory => "$taxondir",
-nodesfile => "$taxondir/nodes.dmp",
-namesfile => "$taxondir/names.dmp”

) ;

my $corr = 0; 
my %qhash; 
my %rankhash; 
my $cur;
foreach my $read_id (keys (%id_list) )
{

my $seq_id = $id_list($read_id); 
my $descline = $index->fetch($seq_id) ;
if ($descline->desc () —  / ( [A\[ ] *)\] $/) #get description starting from 

the right (only what's in the []braces)
{

my $dbdesc = $1;
if ( ($names($read_id)) eq $dbdesc)
(

$corr++;
my $qdesc = $names{$read_id}; 
my $taxid = $db->get_taxonid($qdesc); 
my $taxon = $db->get_Taxonomy_Node ($taxid); 
my $found =0;
if($taxon->rank eq 'no rank')
{

my $tmp = $taxon;
while(defined($tmp) && $tmp->ncbi_taxid !“ 1 &&

!$found)
{
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if($tmp->rank ne 'no rank')
{

$found - 1; 
$qhash{$tmp->rank}++;

}
$tmp * $tmp->ancestor;

}
if(!$found)
{

$qhash('no rank')++; 
$found - 1;

)
}
e l s e

{
$qhash{$taxon->rank)++;

}
}
e l s e

{
#map t a x a  t h a t  d o n ' t  match at species level, a level higher in the taxonomy 
t r e e

my $taxid = $db->get_taxonid($dbdesc) ; 
my $taxon = $db->get_Taxonomy_Node($taxid);
$cur = $taxon; 
my $found = 0;
while(!$found && defined $cur && $cur->ncbi_taxid !- 1)

#only do the ancestor if not found
if(($names{$read_id)) eq ($cur->scientific_name))
{

if($cur->rank eq 'no rank')
{
my $tmp = $cur;
#print $cur->scientific_name."\n'';

while(defined($tmp) && $tmp->ncbi_taxid

!= 1 && !$found)
{
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if($tmp->rank ne 'no rank')
{

$found - 1;
$rankhash {$tmp->rank)

)
$tmp - $tmp->ancestor;

)
if(!$found)
{

$rankhash{'no rank')♦+; 
$found -1;

)
)
else
{

$found ■ 1;
$rankhash {$cur->rank) ++;

}
}
else
{

$cur - $cur->ancestor;
}

}
if(!$found)
{

print "$read_id $seq_id ".$dbdesc."\n"; 
$rankhash{'no rank')++;

}
}

}
>
print "Number of reads with exact database matches\t:" . $corr . \n , 
foreach my $key ( keys %qhash )
{

print "N um ber o f  reads correctly assigned at $key level\t.
. $qhash{$key} . "\n";

)
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foreach my $rank ( keys %rankhash )
{

print "Number of reads at $rank level\t:" . $rankhash($rank) . "\n";
}
sub match_ids
{

my $inseq = Bio::SeqIO->new(-file -> $pppinput, -format ■>'fasta');
while(my $seq = $inseq->next_seq())
{

if(exists $names{$seq->display_id() })
{

my $wait;
if($seq->desc() /A (\S+)\s/)
{

$id_list{$seq->display_id} - $1;
}

}
}
return %id_list;

}
sub check_inputs
{

my ( $infile, $pppinput, $indexfile, $usage ) * 0_;
if ( $help || !($infile) I I !($pppinput) || !(Sindexfile) )
{

usage(); 
exit;

}
unless ( -e $infile )
{ print "File \"$infile\" doesn\'t seem to exist!!\n";

exit;
}
unless ( -e $pppinput )

print "File \"$pppinput\" doesn\'t seem to exist!!\n";
exit;

}
unless ( -e $indexfile )

print "File \"$indexfile\" doesn\'t seem to exist!!\n";
exit;

}
>
sub usage
{ print STDERR « ' USAGE';

Usage:[options]
i | infile: path to file from the ppp output
p | ppp input file: path to the original ppp input reads file 
d| indexfileT path to the taxonomy index file(indexed

bp_index.pl)
h|help: print this help

per?PlS' ranks filter.pl -i /opt/apps/ppp-backend/scratchm/Step-O-
refmicrobial. fna_hits. fna -p ~/apps/data/simrefmicrobial_microbial_reads. fna
-d / o p t /apps/ppp-backend/db/refmicrobial. fna. idx

by
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»!/usr/bin/perl
#pseudo_db.pl creates "pseudo database" out of an annotated database in fasta 
format, by removing sequences "seen" in the input file (fasta format) and 
writes the remaining sequences to another file which can then be treated as a 
new database (with formatdb command).
use Bio::SeqIO; 
use strict; 
use warnings;
my $readsfile = shift; 
my $database = shift; 
my $dbsequence = shift;
my $in = Bio: :SeqIO->new(-file=*>$readsfile, -format">' fasta'); 
my %accession;
while (my $seq = $in->next_seq())
{

my $id = $seq->id; 
if ($seq->desc =~ /A (\S+)\s/)
{

$accession{$l} = $id;
}

}

my $db = Bio::SeqIO->new(-file=>$database, -format=>' fasta') ; 
my $pseq = Bio: : SeqIO->new (-file=>">$dbsequence", -format=>' fasta') ; 
while (my $dbseq = $db->next_seq () )
{ next if(exists $accession{$dbseq->id));

$pseq->write_seq($dbseq) ;
>

iv) pseudo db.pl
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v) get_accesion.pl

#!/usr/bin/perl

#get_accQssion.pi takes an array of readids from the pipeline and searches 
#though the corresponding input reads file to obtain the accession numbers, 
#then use this to go through the respective database and grab the sequences 
which will be used as input to the readsim
use Bio::SeqlO; 
use Getopt::Long; 
use strict; 
use warnings;
my ( $inf ile, $readsf ile, $database, $sequence/ $help );

GetOptions(
'i|input=s' => \$infile,
' r | readsfile=s1 => \$readsfile,
'd|database=s ' => \$database,
' s | sequence=s'=>\$sequence,
'hlhelp' => \$help

) ;

check_inputs ($inf ile, $readsfile, $database, $sequence, $help) ;
my $in = Bio: :SeqIO->new(-file=>$readsfile, -format=>' fasta') ; 
open(IN, $infile); 
chomp (my @readid=<IN>) ; 
my %accession; 
my @found;
while (my $seq = $in->next_seq() )
{

my $id = $seq->id;
if( $seq->desc =~ //M\S+)\s/)
{

$accession{$id} = $1;
}

}
foreach my $i(@readid)
{ push(@found,$accession{$i}) ;
my $db = Bio: : SeqIO->new(-file=>$database, -format=>'fasta'); 
my $dbseq = Bio: : SeqIO->new(-file=>">$sequence", -format»>' fasta') ;

while (my $seq_out = $db->next_seq ())
{ foreach my $i(@found)

{ if($seq_out->id eq $i)
{ $dbseq->write_seq($seq_out) ;
}
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}

s u b  check_inDuts
i

my ( $infile, $readsfile,$database, $sequence, $usage ) - 0
if ( $help II ! ( $infile | | $readsfile I I $database I I Ssequence ) )
{

usage(); 
exit;

}
#Does the file exist? 
unless ( -e $infile )
{

print "File \"$infile\" doesnN't seem to exist!!\n";
exit;

>
unless ( -e $readsfile )
{
print "File \"$readsfile\" doesnN't seem to exist! !\n";
exit;

}
unless ( -e $database )
{ print "Database \"$database\" doesnN't seem to exist!!\n";

exit;
}

}
sub usage {

print STDERR<<USAGE;
Usage: [options]

' i | input :path to the input file with the readid's 
' r | readsfile:path to the original reads file 
'd | database:path to the database to comapre against 
' s | sequence:file to output sequences for the matching accession 

numbers
'h| help' : display this help

Example:
perl get_accession.pl -i . ./data/readid.txt -r /opt/apps/ppp- 
backend/data/simrefviral. fna -d /opt/apps/ppp-backend/db/refviral. fna -s
../data/virus_reads.seq

USAGE 
exit;
}

}
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##LCA.pm shows implementation of the weighted MRCA algorithm alongside the
original MRCA

package LCA;
use strict;
use Bio::DB::Taxonomy;
use Bio::Taxonomy::Taxon;
use Bio::Tree::Tree;
use Bio::TreeIO;

=headl NAME
LCA.pm: Last common ancestor calculation functions
=headl DESCRIPTION
This package provides the ability to calculate the last common ancestor of a 
collection of reads given taxonomy information
=headl SUBROUTINES 
=cut

=head2 findlcas
Title : findlcas
Function: Finds the LCA for each read in a hash of arrays
Returns : %lca: A hash of last common ancestors for each read in the

given hash
Args : $eqref: a reference to the array of previous equivalent hits

to calculate LCAs for
Staxondir: The directory containing the names.dmp and nodes.dmp 

taxonomy files
$fxn: The function to call either LCA or MRCA 
Throws : none

=cut

vi) LCA.pm

sub findlcas
{

my $eqref = shift; 
my $taxondir = shift;
my $fxn =shift; #which function to call 
my %equiv = %{$eqref}; 
my %taxnames; 
my %lca;

my $db = new Bio: : DB: :Taxonomy (-source => 'flat file', 
-directory => $taxondir,

-nodesfile => "$taxondir/nodes.dmp", 
-namesfile => "$taxondir/names.dmp");

foreach my $readid(keys(%equiv))
{
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my @taxon; 
my %descscore;
foreach my $hit (0 {$equiv{ $readid) >)
<

my $desc = $hit->{desc); 
my $bs = $hit->{bitscore); 
my Qsplitdesc;
my @taxnames;
if($desc =~ /\[/) #if we have properly labeled taxon, we'll

use what's in the braces 
{

#could have multiple taxons (like in nr) so we'll
have to check them all

@splitdesc - split(/\[/,$desc); 
foreach my $line(0splitdesc)
(

if($line =~ /A(.*)\]/)
{

push(0taxnames,$1);
}

}
}
else #if not, we'll just try what they have in the

description line before a comma
{

$desc =~ /A(.+)/.*/;
$taxnames[0] = $1;

}
foreach my $line(0taxnames)
{

my $taxid - $db->get_taxonid($line); 
if($taxid != 0)

my $taxoncur = $db->get_Taxonomy_Node($taxid), 
push(0taxon,$taxoncur);
$ d e s c s c o r e { $ t a x i d )  = $ b s ;  # g e t  th e  bitscores

and the corr. taxid's
}

}
}
if (@taxon)
{

my $curlca; 
if ($fxn eq "lea")

$curlca = calclca(\0taxon) ; #get the LCA of these
taxons

}
elsif($fxn eq "weighted")
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$curlca * calcmrca(\§taxon,\%descscore) ; Cgat th«
MRCA's of these taxons

)
else
{

die "Error, MRCA method undefined";
>
if ($curlca ==* 1)
{

$lca{$readid}(name) - 'root';
$lca{$readid}{rank) « 'root';

}
else

{

{

}
}

}
return %lca;

my $tmpnode = $db->get_Taxonomy_Node ($curlca); 
$lea{$readid}{name) ■ $tmpnode->node_name; 
$lca{$readid){rank} = $tmpnode->rank;

=head2 calclca
Title ; calclca
Function: Calculates an estimated last common ancestor for an array of 

taxonomy nodes
Returns : $lowpt: The taxonomy id of the calculated last common

ancestor
Args : $ref: an array reference of taxonomy nodes
Throws : none

=cut

sub calclca
{

my $ref = shift;
my Gtaxons = 0{$ref);
my %anc;
my $pos = 1;
my $cur = $taxons[0);
my $lowpt = $cur->ncbi_taxid;
#go through the first taxon and map its parents all the way up to the

root
while(defined $cur && $cur->ncbi_taxid != 1)

$anc{$cur->ncbi_taxid} = $pos; #pos is the depth into the tree
$pos++;
$cur = $cur->ancestor;
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)

$anc{l} = $pos; #map the root node as the highest point 
#for the rest of the taxon nodes 
for(my $i=l;$i<@taxons;$i++)
{

my $id;
$cur - $taxons[$i]; #get the current taxon 
ilook at the current node and its parents and find when it 

matches with a node in the ancestry of the first 
#will find the lowest common ancestor 
while (defined $cur && ! $anc($cur->ncbi_taxid))
{

$cur = $cur->ancestor;
}
if (defined $cur) #if we have a connection, pick it up. else root
{

$id = $cur->ncbi_taxid;
}
else
{

$id = 1;
}

§if the newfound ancestor is lower than the current lowest point,
update

if($anc{$lowpt}<$anc{$ id})
{

$lowpt = $id;
}

}
return $lowpt;

}

=head2 calcmrca
Title : calcmrca
Function: Calculates an estimated weighted most recent common ancestor 

for an array of taxonomy nodes
Returns : $wmrca: The taxonomy id of the calculated last common 

ancestor
Args : $ref: an array reference of taxonomy nodes

$dref: a reference to the hash of taxonids with their
corresponding descriptions 

Throws : none
=cut

s u b  c a l c m r c a

{

my $wait = 1;
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my $ref = shift; 
my 0 taxons = 0{$ref}; 
my $dref = shift; 
my %descscore = %{$dref); 
my %bitscore; 
my $tree = undef; 
my $cur; 
my $curbs;
for (my $i= 0; $i<0taxons; $i++)
{

$cur = $taxons[$i];
$curbs = $descscore{$cur->id}; 
if ($cur)
{

if(!defined $tree)
{

$tree = Bio::Tree::Tree->new(-node=>$cur) ;
>
else
{

$tree->merge_lineage($cur) ;
}

}
else
{
print STDERR "Error\n";
}

#go through the first taxon and map its parents all the way up to the
root

while (defined $cur && $cur->ncbi_taxid != 1)
{

$bitscore{ $cur->id} += $curbs;#add up the bitscores as you
walk up the tree

$cur = $cur->ancestor; 
my $wait =1;

}
}
my $root = $tree->get_root_node;
my 0 nodeque;
push (@nodeque,$root);
my $rootbs = $bitscore{$root->id);
my $i;
my $wmrca;
my $cutoff = sprintf("%.Of", (60/100 * $rootbs) ) ;
#my $cutoff = 2/3 * $rootbs; 
while ($i< 0nodeque)
{
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my 0children = $nodeque [$i] ->each_Descendent () ;fget the 
descendant of each node

#loop through the children and push onto the hash if they pass
the %cutoff

my $count=0;
foreach my $child (@children)
{

if(($bitscore{$child->id})> Scutoff)
{

push (Qnodeque, $child);
$count++;

}
)
if ($count == 0) #if no child passes the cutoff, return it's parent
{

$wmrca = $nodeque[$i]->id;
0 nodeque=();

}
$i++;

>
my $ tes t; 
return $wmrca;

}

1;

The bold text shows the parts in the script that are specific to the weighted MRCA (written during this 

project).
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>ii) lcawrap.pl

#! /usr/bin/perl
♦ ♦lcawrap.pl -takes as input the equivalent hits file from the PPP and 
returns the different abundances of the read sequences and their taxonomic
ranks (for both mrca and weighted mrca)
use LCA; 
use strict; 
use warnings;
my $fname = shift; #equiv's file 
my Soutfile * shift; 
my $otherfile = shift;

open (FH, $fname) ;
open(EXACT, ’+>*, $outfile) ; #for the given readid,the descriptions match
open (OTHER, ">>$otherf ile") ; #file for the assignments at each level (both
exact/not exact matches)
my %equiv;
my $state = 0;
my $incstate = 0;
my $id;
while (my $line = <FH>)
{

chomp $line;
if($state == 0 | | $state == 2)
{

if($line =~ /A\#(\S+)/)
{

$id = $1;
$state = 0;
$incstate=l;

}
}
if ($line)
{

if($state == 1)
{ if ($line =~ /ALCA/)

{
$incstate = 1;

}
else
{

$state++;
}

}
if($state == 2)
( if ($line —  /A (\S+) bs=\s*(\S*) hsplen-\s*(\S*)

pid=\s*(\S*) expect=\s*(\S*) (.*)$/)
{

my %tmp;
$tmp{acc}=$l;
$tmp{bitscore} = $2;
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$tmp{length) - $3;

$tmp{pid) * $4;
$tmp{expect) - $5;
$tmp{desc) - $6;
push (0 {$equiv{$id)}, \%tmp);

)
)

}
if($incstate==l)
{

$state++;
$state = $state % 3;
$incstate = 0;

)
)
my %lca = LCA: : findlcas (\%equiv, "/opt/apps/ppp-backend/taxon/", "lea"); 
my %mrca = LCA: : findlcas (\%equiv, "/opt/apps/ppp-backend/taxon/”, "weighted") ;

#compare the two hashes, get the differences in the assignments by the two
algorithms
my $taxondir = "/opt/apps/ppp-backend/taxon"; 
my $db = new Bio: :DB: :Taxonomy(

-source =>1flatfile',
-directory => $taxondir,
-nodesfile => "$taxondir/nodes.dmp",
-namesfile => "$taxondir/names.dmp"

);
my @lcanames; 
my @mrcanames;
foreach my $readid (keys (%lca))
{

if ( ($lca{$readid} {name} eq $mrca{$readid) (name)) &&
($lca{$readid) {rank} eq $mrca{$readid) {rank)) )

{
print EXACT $readid."\t" .$mrca{$readid){name}."\t". 

$mrca{$readid} {rank} . "\n";
}
if ( ($lca{$readid} {name} ne $mrca{$readid} {name}) II 

($lca{$readid} {rank} ne $mrca{$readid} {rank}) )
. { •

#get the different taxonomic ranks 
push(Glcanames, $lca{$readid}{name}); 
push (@mrcanames, $mrca{$readid}{name}) ;

}
)
my %lcadf; 
my %mrcadf; 
my %uptree;
for(my $i=0;$i<0mrcanames;$i++)
{ my $mrca = $mrcanames[$i ] ;

my $lca = $lcanames[$i] ;
my $mrcataxid = $db->get_taxonid($mrca) ;
my $lcataxid = $db->get_taxonid($lca);
my $ltaxon = $db->get_Taxonomy_Node ($lcataxid) ;
my $taxon =$db->get_Taxonomy_Node($mrcataxid) ;
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if(defined $ltaxon && defined $taxon)
{

my $lcanode = $ltaxon->node_name; 
my $mrcanode = $taxon->node_name; 
if($ltaxon->rank)
{

$lcadf($ltaxon->rank}++;
}
if($taxon->rank)
{

$mrcadf{$taxon->rank}++;
}
while ( ($taxon->rank eq 'no rank') && ($taxon->id !- $ltaxon->id) )
{

$taxon = $taxon->ancestor;
imove up the tree till we hit the same assignment as for

lea
$uptree{$taxon->rank}++;

}
}
else
{

print STDERR "Warning: Entry is not defined\n"; 
print STDERR $mrca."\t$lca\n";

}
}
leant close the file, have to read from it later 
my %ranks;
seek (EXACT, 0, 0) ; #seek to the beginning of the file 
while(<EXACT>)
{

chomp;
my @lines = split(/\t/,$_) ; 
my $name = $lines[l]; 
my $rank = $lines[2]; 
if($rank)
{

$ranks{$rank}++;
}

}

foreach my $key (keys(%ranks) )
{ print OTHER "Reads with exact matches assigned at $key 
level\t:" . $ranks{$key} ."\n";
}

print OTHER "\n";
foreach my $key (keys (%lcadf) )

print OTHER "Reads assigned by old lea at $key 
level\t:" . $lcadf{$key} ."\n";
}

print OTHER "\n";
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fcreach my $key (keys(%mrcadf))
{

print OTHER "Reads assigned by mrca at $key 
Ievel\t:".$mrcadf{$key}."\n";
}
foreach my $rank(keys(%uptree))
{

print OTHER " "."Reads reassigned at $rank 
level\t:".$uptree{$rank)."\n";
>
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