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ABSTRACT 

The purpose of this study describes financial time series modelling with special 

application to modelling inflation data for Kenya. Specifically  the theory of time series is 

modelled and  applied  to  the  inflation  data  spanning  from  January  1985  to  April 

2016 obtained  from  the  Kenya National Bureau of Statistics.  The arch type family 

models were fitted and forecast to the data because data was characterized by variation in 

variance and mean. The outcome of the study revealed that the ARCH –family type 

models, particularly, the EGARCH (1, 1) with generalized error distribution (GED) was 

the best in modelling and forecasting Kenya’s monthly rates of inflation. The study 

recommends that governments, policy makers interested  in  modelling  and  forecasting  

monthly  rates  of  inflation  should take into consideration  Heteroscedastic models since 

it  captures the volatilities in the monthly rates of inflation. 
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CHAPTER ONE  

INTRODUCTION OF THE STUDY  

1.0 Background of the Study 

In recent years, rising inflation has become one of the major economic challenges facing 

most countries in the world especially developing countries like Kenya. The rise  in the 

prices in an economy is referred to as  inflation (Webster, 2000). 

When there is an increase in inflation the effects of the citizens vary as some people will 

lose confidence with state of the currency since the currency depreciates. It leads to 

demand for high wages in the economy and for companies to overcome the wage 

increases they will increase the prices of goods and services so as to continue making 

profits in offering their services. 

According to Schotman and Sweitzer(2000) they argued that rising inflation is a major 

cause of fear to investors since it reduces return for every investment.. Stable inflation 

plays a significant role to attract foreign investors since they are no fears for a decrease in 

the return of their investments (Suleman and Sarpong, 2012). 

 Bailey (1956) furthermore stated that the costs associated with unanticipated inflation are 

the distributive effects from creditors to debtors, increasing uncertainty affecting 

consumption, savings, and borrowing and investment decisions. 

The maintenance of price stability is one of the macroeconomic challenges that the 

Kenyan government has been facing since its independence which is now 54 years ago. 

Inflation Rate in Kenya averaged 10.44 percent from 2005 until 2016, reaching an all-time 
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high of 45.98% in 1993, 31.50% in May of 2008 and a record low of -0.1 in 1964 (KNBS, 

2016).  

 

Having achieved single digit inflation, Kenya will need to consider how best to manage 

monetary policy in a low moderate inflation environment. However, in the last few 

months in 2016, the country can be seen to be wining the fight against inflation as 

inflation has been kept at single digits. This creates a gap in the field of the research so 

that the pattern of inflation rate can be known by the investors, government and 

economists so as to plan well in budgeting. 

1.2 Inflation rate volatility  

According to Abdalla (2011), volatility refers to the spread of all unlikely outcomes of an 

uncertain variable. Inflation rate fluctuations have received much attention because it has 

an influence on the economy, international trade, investment analysis, profitability and 

risk management among others. For most financial time series, Bollerslev’s GARCH (1, 

1) model has been found to be sufficient for modelling inflation rate volatility.  

Historical volatility is the realized volatility over a given time period and can be obtained 

whereby, with a series of past inflation rates, the standard deviation of the daily price 

changes can be calculated and these can then be extended to annual volatility. A financial 

time series,say (𝑌𝑡), is often a serially uncorrelated sequence with zero mean, even as it 

exhibits volatility clustering, suggesting that the conditional variance of (𝑌𝑡) given past 

returns is not constant.  
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According to Kamal et al (2012), many financial crises such as those of Latin America, 

Southeast Asia and Russian economies stemmed from sudden and unexpected oscillation 

of inflation rate thus highlighting the importance of measurement of inflation rate 

volatility, it’s forecasting and behavior. Inflation rate movements’ impact on volume and 

value of foreign trade and investment in that inflation rate volatility tends to affect imports 

and exports which further influence a country's balance of payments.  

Over the last few years, modelling volatility of a financial time series has become an 

important area and has gained a great deal of attention from academics, researchers and 

others.  

The Arch type models like  GARCH cannot account for leverage effect, however they 

account for volatility clustering and leptokurtosis in a series, this necessitated to develop 

new and extended models over GARCH that resulted into new models GARCH-M, 

EGARCH, TGARCH and PGARCH.   

1.3 Statement of the Problem  

Due to the fact that inflation levels affect all other sectors of the economy especially 

business transactions, it is important to be able to forecast or estimate the value of 

inflation in the future so that such values are incorporated in decisions affecting all these 

other sectors. Inflation rate volatility affects policy makers as well as investors hence the 

need to study volatility pattern which can aid in financial decision making.  

 

The CBK’s primary objective is to formulate and implement monetary policies. 

Depending on the direction a government wants its economy to make, they may create 
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monetary policies that either appreciate or depreciate their currency. Policy makers 

essentially rely on volatility estimations so as to enable them make decisions on what 

direction the currency should take. This indicates a gap in literature or information on the 

relative performance of these models in the context of developing countries and poses a 

challenge as to which of these models is the optimal choice for modelling and forecasting 

economic and financial data (in particular inflation rates) for developing countries. 

This study therefore intends to model monthly inflation in Kenya using the ARCH-type 

models and to choose the most appropriate model suitable for inflation modelling and 

forecasting in Kenya. 

1.4 Objectives of Study  

1.4.1 General Objective  

The main objective of the study was to model the monthly inflation rate volatility using 

ARCH type family models.   

1.4.2 Specific Objectives  

The specific objectives of the study were:  

i.) Fitting the ARCH type model to the inflation returns.  

ii.) Analyzing the adequacy of the fitted ARCH type family models.  

iii.) Generation of a ten year forecast on the inflation rate returns 

1.5 Significance of Study  

It will facilitate investigation of inflation rate risk which can be an indicator of 

vulnerability in the economy. This will enable the government manage the volatility, at 
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least in the short run as well as provide reliable models for policy makers to help them 

anticipate possible vulnerabilities of financial markets and the economy and to analyze 

and forecast volatility  that can guide the central bank to intervene in the market when the 

need arises. Further, it will bring about an understanding of the behavior of inflation rates 

as well as an attempt to explain the sources of these movements as well as fluctuations.  

They can use this information to make decisions on future investments from the observed 

patterns of inflation rate volatility considering that investors' confidence to invest in a 

particular country is inversely related to high volatilities in inflation rates. The 

Government will also be able to manage the inflation rate volatility at least in the short 

run. Kenya as a developing country would benefit greatly from this kind of research which 

hasn't been explored much in spite of the fact that inflation rate fluctuations have a huge 

contribution to macro - economic variables like interest rate and exchange rate. 
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CHAPTER TWO  

LITERATURE REVIEW  

 2.0 Introduction  

Dynamic nature of inflation behavior is an accepted phenomenon and all participants in 

the financial markets include regulators, professionals and academics have consensus 

about it. The answer to this question, because of the great number of involved variable, is 

not an easy task and up to now there is no consensus about it. However researchers in 

quest of answer to this question have investigated the inflation volatility from different 

angles. Therefore this chapter discusses various research done related to modelling 

inflation rate volatility. 

 2.1 Review of Previous Studies  

Engle (1982) noted that for conventional econometric models, the conditional variance did 

not depend upon its own past. He thus proposed the ARCH model which was able to 

capture the idea that today's variance does depend on its past as well as the non-constant 

nature of the one period forecast variance. He also found that the parameter had to satisfy 

the non-negativity constraints as well as some stationary conditions.  

Both the ARCH and GARCH models of Engle (1982) and Bollerslev (1986) could not tell 

how the variance of return was influenced differently by positive and negative news, 

Nelson (1991) suggested the EGARCH which worked better. 

Ngailo and Massawe (2014) used monthly inflation data observations from Tanzania and 

considered the GARCH approach in modelling inflation rates for eleven years from 2000 

to 2011. After performing all the diagnostic checks on Jarque bera test on kurtosis and the 
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stationarity using Augmented ducker fuller test. They found out that the inflation returns 

volatility works better with the class of GARCH(1,1). 

In Ghana, Oteng-Abayie and Doe (2013) concluded that inflation uncertainty in any 

economy raises inflation. They used GARCH models in investigating the connection 

between inflation and the uncertainty of inflation for 23 years from 1984- 2011.  

Jere and Siyanga (2016)  did a study in the inflation rate volatility in Zambia for five years 

from 2010 to 2014 and also did a forecast for one year using exponential smoothing and 

forecasted using ARIMA.  The ARIMA ((12), 1, 0) was the best fit for forecasting. 

Faisal (2012) examine the volatility of inflation rate in Bangladesh using time series 

GARCH model. He used monthly inflation rates spanning the period 1990-2011. 

According to them, the main objective of an inflation rate policy is to determine an 

appropriate inflation rate and ensure its stability and over the years, efforts put by the 

Government to achieve this have not yielded positive results. He thus sought to build a 

forecasting model that would adequately capture the volatility of inflation rate return 

series using GARCH model and the outcome of his research was to assist the government 

to manage the exposure of the inflation rate volatility in the short run, inform investors on 

future behavior of inflation rates thus helping them in decision making and help end users 

of volatility models such as importers, exporters, etc.  

The effects of good and bad news on volatility in the Indian stock markets using 

asymmetric ARCH models during the global financial crises of 2008-2009 was 

investigated by Goudarzi and Ramanaraynan (2011). The asymmetric volatility models 

considered were the EGARCH and TGARCH models and the BSE 500 stock index was 

used as a proxy to the Indian stock market. The study found out that the BSE 500 return 
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series reacted to good news and bad news asymmetrically. The EGARCH (1,1) and 

TGARCH (1,1) models were estimated for the BSE 500 stock returns series using the 

robust method of Bollerslev-Wooldridge’s quasi-maximum likelihood estimation (QMLE) 

assuming the Gaussian standard normal distribution. 

Awogbemi and Oluwaseyi (2011) results showed that ARCH and GARCH models are 

better models because they give lower values of AIC and BIC as compared to the 

conventional Box and Jenkins ARMA models for inflation in Nigeria. The researchers 

also observed that since volatility seems to persist in all the commodity items, people who 

expect a rise in the rate of inflation (the ‘bullish crowd’) will be highly favored in the 

market of the said commodity items. 

Ocran (2007) on stylized facts about Ghana’s inflation experience indicated that since 

Ghana’s exit from the West African Currency Board soon after independence, inflation 

management has been ineffective despite two decades of vigorous reforms.  

Jiang (2011) believed that it was worthy to investigate the inflation and inflation 

uncertainty relationship in China as it is commonly believed that one possible channel that 

inflation imposes significant economic costs is through its effect on inflation uncertainty. 

He addressed the relationship of inflation and its uncertainty in China’s urban and rural 

areas separately given the huge urban-rural gaps In conclusion he said that EGARCH(1,1) 

was the best in studying the inflation arte volatility in China. 
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CHAPTER THREE  

RESEARCH METHODOLOGY  

3.0 Introduction  

It introduces the non-stationary models used in measuring volatility.  

I
I

t

t
tr

1

log



                 (3.0) 

Where:    

tr -    Inflation return rate.  

I t
-  Current inflation rate 

I t 1
- Previous inflation rate.  

3.1 Financial Time series Models 

The stylized characteristics of financial time series data include: almost zero correlation, 

absolute/squared data exhibit high correlation and excess kurtosis/ heavy tailed 

distribution. 

3.2: The ARCH Model 

Suppose tYYY ,...,, 21 are the time series observations and let t  be the set of ty  up to time 

t, including ty  for 0t . The process  ty  is an Autoregressive Conditional 

Heteroscedastic process of order p, ARCH(p), if: 

                                                    tt yr    
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                                      ttty              t ~ ),0( 2N                                                  (3.1) 

                   



p

j

jtjt y
1

2

0

2                                                                        (3.2) 

With ,00   0j  and 1
1




p

j

j , as the ARCH model parameter limits. The conditions 

stated guarantees that the conditional variance be positive  

Properties of ARCH(p) Model 

The Mean; 

From equation 3.1, the conditional expectation and variance of tx  is: 

0)( tyE  since the expectation of t  is 0. 

 The Second Moment or Variance; 

                           )()( 222

ttt EyE  = )( 2

tE                                                     (3.3) 

Since 12  following a standard normal distribution of t . 

                                               



p

j

tjt yEE
1

2

10

2 )()(   

Given )()( 2

1

2

 tt yEE  under stationarity assumption, 

                            







p

j

j

tE

1

02

1

)(




                                                                  (3.4) 

For ARCH(1), the variance is given by; 
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1
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1
)(







tE                                                                      (3.5) 

The Kurtosis; 

 

First, the forth moment of the time series is obtained, 

  

 

                                              

}){(3 22

tE                                                                                            (3.6) 
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2
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Substituting equation (3.6), we have; 

 
 
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p

j

p

j

tjtjt yEyEyE
1 1

4

1

22
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2

0

4 )}()(2{3)(   

Under stationarity,        





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j
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022

1
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
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1
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The Kurtosis is given by;                                            

                                            K(y)  
22

4

)}({

)(

t

t

yE

yE
                                                                    

Substituting equations (3.5) and (3.7), we get; 

                                           K(y) = 






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
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p

j

j

p

j

j

p

j

j

1

2
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3


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           (3.8) 

Therefore, the kurtosis is 

                                               


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

                                                                (3.9)                           

When j=1, we get ARCH(1), then the Kurtosis of ARCH(1) is; 

                                                      

2

1

2

1

31

1
3








K                                                                                (3.10) 

Which is strictly greater than 3 unless 01  . The kurtosis for a normally distributed 

random variable Z is 3. Thus, the kurtosis of ty is greater than the kurtosis of a normal 

distribution, and the distribution of ty  has a heavier tail than the normal distribution, when

11  . 

3.1.1: Fitting Procedure for ARCH model 

There are two steps in model fitting: 
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Step1: Plotting the return series and analyzing the autocorrelation function (ACF) and the 

partial autocorrelation function (PACF). 

.We check for correlation in the return series by performing the autocorrelation function to 

compute and display the sample ACF of the returns and by plotting the partial correlation 

functions. 

The ACF definition (Auto correlation function) 

A time series {𝑋𝑡} has mean function 𝜇𝑡=𝐸 [𝑋𝑡]  

The auto correlation function (ACF) is 

𝜌𝑥(ℎ) =  
𝛾𝑥(ℎ) 

𝛾𝑥(0)
 = 𝑐𝑜𝑟𝑟(𝑋𝑡+ℎ,𝑋𝑡)  

PACF Definition (Partial Autocorrelation Function) of the k-th order is defined as:   

.    𝑃𝑘𝑘      =   𝜑
𝑘𝑘  =  𝑐𝑜𝑟𝑟(𝑋𝑡 −𝑃( 𝑋𝑡|𝑋𝑡+1,…,𝑋𝑡+𝑘−1

),𝑋
𝑡+𝑘−𝑃(𝑋𝑡+𝑘|𝑋𝑡+1,…,𝑋𝑡+𝑘−1))

 

Step2: Performing preliminary tests, such as ARCH effect test or the Q-test.   

We can quantify the preceding qualitative checks for correlation using formal hypothesis 

checks, like Ljung-Box-Pierce Q-test and Engle’s ARCH test. By performing a Ljung-

Box-Pierce Q-test, we can verify, at least approximately, the presence of any significant 

correlation in the returns when tested for up to 20 lags of the ACF at the 0.05 level of 

significance. 
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Weakness of ARCH model 

Despite ARCH model able to capture the characteristics of financial time series data, it has 

some weaknesses that may make GARCH model better. These weaknesses include; 

ARCH treats positive and negative returns in the same way (by past square returns), it is 

very restrictive in parameters, it does not provide any new insight for understanding 

financial time series, it often over-predicts the volatility, because it respond slowly to large 

shocks and volatility from it persists for relatively short amount of times unless p is large. 

3.3: The GARCH Model 

Although the ARCH model has a basic form, one of its characteristics is that it requires 

many parameters to de scribe appropriately the volatility process of an asset return. Thus, 

alternative models must be further searched, one of them being the one developed by 

Bollerslev (1986) who proposed a useful extension known as the generalized ARCH. 

As against the ARCH model, the Generalized Autoregressive Centralized Heteroskedastic 

Model (GARCH) has only three parameters that allow for an infinite number of squared 

roots to influence the current conditional variance. This feature allows GARCH to be 

more parsimonious than ARCH model, which feature explains the wide preference for use 

in practice, as against ARCH. 

While ARCH incorporates the feature of autocorrelation observed in return volatility of 

most financial assets, GARCH improves ARCH by adding a more general feature of 

conditional heteroscedasticity. Simple models - low values of parameters p and q in 

GARCH (p,q) - are frequently used for modeling the volatility of financial returns; these 

models generate good estimates with few parameters. 
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The process tY  is a GARCH (p,q) if: 
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Where q>0, 0,0, 0  iop    for i=1,2,…….,p, 0j for j=1,……..q are the 

parameter limits. Again these conditions are needed to guarantee that the conditional 

variance 02 t . 

Properties of GARCH (p,q) 

The mean; 

From equation (3.1), the conditional expectation and variance of tx  is: 

0)( tyE  , since the expectation of t  is 0. 

 The Second Moment or Variance; 
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For GARCH (1, 1) 
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The Kurtosis; 

First the forth moment of the time series is obtained; 

}){(3)(}){(}){()( 224224224

tttttt EEEEyE     

But  

}){(}){( 2

1 1

22

0

22  
 

 
p

i

q

j

jtjitit yEE   

    
     

 
p

i

q

j

p

i

q

j

p

i

q

j

jtitjijtjitijtjiti yEEyEEyE
1 1 1 1 1 1

22222422

0

2

0

2

0 )(2])[()()(2)(2   

When i = j = 1, we get GARCH (1, 1) 

)(2)(2)(2}){()(}){( 2

110

2

110

2

1

2

111

22

1

2

1

4

1

2

1

2

0

22

  ttttttt EyEyEEyEE   

    )()(2}){()23( 2

1110

22

1

2

111

2

1

2

0   tt EE                  (3.16) 

Assuming the process is stationary, }){(}){( 22

1

22

 tt EE   

Hence  

  
2

111

2

1

2

1110

2

022

231

)()(2
}){(









 t

t

E
E  

       
)231)(1(

)(2
2

111

2

111

11

2

0

2

0








  



17 

 

                }){(3)( 224

tt EyE   

             K   
)231)(1(

)(2
3

2

111

2

111

11

2

0

2

0








                               (3.17) 

The Kurtosis is given by;                                            
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Substituting equation (3.15) and equation (3.17), we get;  
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Which is strictly greater than 3 unless 01   

The same fitting procedure is applicable for a general GARCH (p,q). 

3.3 GARCH Model Extensions  

There are some aspects of the model which can be improved so that it can better capture 

the characteristics and dynamics of a particular time series in leverage effects, volatility 

clustering and leptokurtosis are commonly observed in financial time series.  

3.3.1 Symmetric GARCH  

This property is seldom(not often) in accordance with empirical results where a leverage 

effect often is present, i.e., volatility increases more after negative return shocks than after 

positive return shocks of the same magnitude ( “bad news” generates higher volatility 

more than “good news” lowers the volatility).  



18 

 

3.3.2 Asymmetric GARCH Measurement  

While ARCH/GARCH models provide a venue for modeling conditional heteroscedastic 

volatility with a Normal or Non-normal error distributions, these models assume that 

positive and negative shocks have the same effect on volatility because it depends on the 

square of previous shocks.  

In practice, the price of financial assets often reacts more pronouncedly to “bad” news 

than “good” news. Such a phenomenon leads to a so called leverage effect, as first noted 

by Brooks (2008). The term “leverage” stems from the empirical observation that the 

volatility (conditional variance) of a stock tends to increase when its returns are negative.  

3.4 The E-GARCH 

To overcome some weaknesses of the GARCH model in handling financial time series 

Nelson(1991) introduced EGARCH. 

Another way of making σt
2 

non-negative is by making ln(σt
2 

linear in some function of 

time and lagged t’s. This formulation leads to the asymmetric GARCH model, Exponential 

GARCH of Nelson(1991):  

Exponential GARCH (EGARCH) proposed by Nelson (1991) gives a leverage effects and 

asymmetry in its equation.  In the EGARCH model the specification for the conditional 

covariance is given by the following form: 
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Two advantages stated in Brooks (2008) for the pure GARCH specification; by using 

 t2ln   even if the parameters are negative, will be positive and asymmetries are allowed 

for under the EGARCH formulation. 

Where:  

k   -leverage effects  

If   0k  - leverage effect exist  

0k  asymmetric impact. 

Nelson notes, “to accommodate the asymmetric relation between stock returns and 

volatility changes, the value of g(zt) must be a function of both the magnitude and the sign 

of zt”. This leads to the following representation:  

                                         g(zt) = θ1zt   +    θ2 [|zt|− E (|zt|)]                                             (3.20)  

                                              |         |                                                           

                                          Sign effect      Magnitude effect                     

Thus, g(zt) allows the conditional variance  to respond asymmetrically to rises and falls 

in stock price.In contrast to the GARCH models, the EGARCH models do not have any 

restrictions on the parameters in the model.  

3.5 Glosten-Jagannathan-Runkle (GJR) model:  

To capture the leverage effect, Glosten, Jaganathan, and Runkle (1993) show how to allow 

good news and bad news to have different effects on volatility by using yt
2 

as a threshold. 

A GJRGARCH(1,1) model can be generally expressed as:  
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where  1td
  is a dummy variable that is: 

















newsgood,0uif0

newsbad,0uif1
d

1t

1t

1t

                                   (3.22)                    

In the model, effect of good news is shown by  i ,  while bad news shows their impact by 

 . In addition if 0  news impact is asymmetric and 0 leverage effect exists.   

For the satisfaction of non-negativity condition coefficients would be 
00 

,  0i  , 

0  and 0ii  . That is the model is still acceptable, even if 0i  , provided 

that 0ii   . 

3.6 Forecast of Conditional Variance in GARCH model 

The formula used to calculate the multi-step ahead forecasts of the conditional variance 

for the GARCH(1,1)model is obtained as illustrated. For such a model, the variance 

equation is 

2
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  ttt y                (3.23) 

Denote the forecast origin by n and the forecast horizon by h  Let nF  be the information 

set available at time n . For 1h , the 1-step ahead forecast of the conditional variance is 

simply 
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For 2h , by using the assumption that tZ ’s are i.i.d. )1,0(N , we have 
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By the same argument, it is easily seen that for jh  , the j -step ahead forecast of the 

conditional variance of the GARCH(1,1) model is 
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Therefore, the forecasts of the conditional variances of an GARCH (1,1) model can be 

computed recursively. 

3.7 Conditional Error distributions 

3.7.1 Normal distribution 
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3.7.2 Student t distribution 

When v∞ the distribution converges to a standard normal. 
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𝑓(𝑥) =  
Γ (

𝜐 + 1
2 )

√𝜐𝜋Γ (
𝜐
2) (1 +

𝑥2

𝑣 ) ..
𝑣+1

2  

 

3.7.3 Generalized error distribution 

 

𝑓(𝑥) =
𝜆. 𝑠

2. Γ (
1
𝑠)

. exp (−𝜆𝑠. [𝑥 − 𝜇]𝑠 ) 

 

Where: 

 

𝜆 − Scale parameter 

 

                   𝜇 −  location parameter 

 

                   Γ(Z) − Euler Function 

  
s − Shape Parameter 

 

3.8 Model selection criteria 

Selection criteria assess whether a fitted model offers an optimal balance between the 

goodness-of-fit and parsimony. The most comon model selection criteria such as the 

Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the 

Schwarz information criterion (SIC), Hannan  Quinn Criterion (HQ) and Loglikelihood  

(LL)were used as bases for selection criteria.  

 AIC =  2log (maximum likelihood) + 2k where k = p + q + 1 if the 

model contains an intercept or a constant term  and  k = p + q.  

 BIC= - 2log (L) +  2(m) 

 HQ=-2log(L) + 2m log (log n) 

 SIC=-2log(L) + (m + m log n) 
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Where, n and m are number of observations (sample size) and parameter in the model 

respectively and log l is the ℓoglikelihood. The desirable model is one that minimizes the 

AIC, the BIC, the HQ, SIC and LL. 
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CHAPTER FOUR  

DATA ANALYSIS AND RESULTS  

4.0 Introduction  

This section reviews the analysis and interpretation of the monthly inflation rate of 

Kenya from January 1985 to April 2016. 

4.1 Data  

Secondary data consisting  of  year-on-year  inflation  data  for  each  month  from  

January  1985  to April 2016 was used in this study.. www.knbs.or.ke. Inflation rate is 

derived from the consumer price index has shown: 

  

 It %100*1
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Where:  

 𝑃t   -     The current prices 

 𝑃t-1  -  The previous prices  

The inflation rate returns is:  

I
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t
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1
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http://www.knbs.or.ke/
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4.2 EXPLORATORY DATA ANALYSIS.  

The time plot of monthly inflation rates is as shown: 

 

Figure 4.1: The plot of raw inflation data  

The inflation rate trend can be clearly seen observed as the rate rises gradually. 

Clustering is observed. The volatility characteristics of financial time series data can be 

clearly seen from the rise drop of the inflation rate  
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4.3 INFLATION RATE RETURNS DATA  

4.3.1 Simple and log Returns time series plot  

The time plot for Log returns is as shown in figure 4.2;  

 

Figure 4.2 Log returns 

From the log returns plots of the returns, volatility clustering can be clearly observed. (i.e 

where a large changes are followed by other large changes of either sign and small 

changes are followed by small changes). The mean reverting (returns tend to remain 

around a certain value) property can also be seen clearly where the returns revolve around 

zero.  
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 4.3.2 Simple and Log returns Descriptive Statistics  

Table 4.1 Simple and log Returns Descriptive Statistics 

  Simple Returns Log Returns  

Nobs 376 376 

1 Quartile -0.08624 -0.090191 

3 Quartile 0.096058 0.09172 

Mean 0.049766 -0.002058 

Sum 18.71214 -0.773666 

SE Mean  0.02099 0.016332 

LCL Mean 0.008494 -0.034171 

UCL Mean 0.091039 0.030056 

Variance 0.165655 0.100289 

Stdev 0.407007 0.316685 

Skewness 4.911781 0.881051 

Kurtosis 37.91698 15.20271 

 

Based on the results of the basic statistics of the data, the mean of the simple and log a 

return 0.049766 and -0.002058 is close to zero. The values of the kurtosis are 37.91698 

and 15.20271 which are greater than 3 hence the data exhibits excess kurtosis showing 

heaving tail distribution. Similarly, the values of the skewness are 4.911781and 

0.881051which are greater than 0 (zero).  
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4.3.3 THE ACF AND PACF PLOTS 

 

Figure 4.3: Plot of log returns for PACF and ACF 

The PACF and ACF show 7 and 8 significant lags which demonstrates long term 

dependence. 

4.3.4 ARCH Effect Tests 

Table 4.2: Ljung box test for Log Returns at different lags.  

Test statistic  15.9591 18.80741 21.86465 

Parameter  3  5  7  

P-value     0.001156088 0.00208751 0.002680528 

 

 From the Ljung box test for log returns, the p-values and the values of the test statistic at 

different lags suggests that the ARCH effects are significant. The resulting p-values and 

the values of the test statistic from the Ljung box test for squared log returns at different 

lags suggests that the ARCH effects are significant.  
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Tests for auto correlation in the inflation rate series indicate that there is auto correlation 

in the series as well as in the squared series (Figure 4.4 ) thus The ARCH model was 

considered appropriate.  

 4.5 GARCH MODEL.  

  4.5.1 GARCH QQ Distribution Plots  

 

Figure 4.4 The QQ plot of GARCH (1,1) model with distribution.  

This is clearly indicated by the failure of the data to be linear at the tails suggesting a more 

heavily tailed distribution for the residuals since norm QQ is a poor fit. The std – QQ plot 

however seems to have a relatively fair fit with student-t distribution being the residual 

distribution.  
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Table 4.3: The AIC and Log Likelihood distributions of GARCH 

 

  

Based on (AIC) and LL value on the results in table 4.4, GARCH (1,1) appears to be the 

model that best fits the data with GED. 

 MODEL  RESIDUAL 

DISTRIBUTION  

AIC  LOG LIKELIHOOD  

GARCH (1,1)  

Normal  

-0.541131  102.9011  

Student-t  

-0.9002348 107.7234 

Generalized Error  

-0.901778  107.677  

GARCH (1,2)  

Normal  

-0.544731  102.9586  

Student-t  

-0.901070  107.6776  

Generalized Error 

-0.900034 107.6812 

GARCH (2,1)  

Normal  

-0.540380  102.9011  

Student-t  

-0.900948  107.676  

Generalized Error 

-0.900032 107.6813 

GARCH (2,2)  

Normal  

-0.543974  102.9586  

Student-t  

-0.900957  107.6811  

Generalized Error 

-0.900012 107.6792 
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4.6 GJR GARCH MODEL.  

4.6.1 GJR GARCH (1,1) distribution QQ plots.  

 

Figure 4.5 GJR-GARCH (1,1) and QQ plots.  

The norm - QQ plot suggests that the data is a poor fit when the residual distribution is 

Normal, thus the data is possibly non-normal. This is clearly indicated by the failure of the 

data to be linear at the tails suggesting a more heavily tailed distribution for the residuals. 
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The std – QQ plot seems to have a relatively fair fit with student-t distribution being the 

residual distribution. A good fit linear fit is observed with  GED.  

4.6.2  GJR GARCH with Error distribution.  

 

Figure 4.6: The QQ plot for GJR-GARCH  with residual distribution.  

The QQ plot for GJR-GARCH have similar properties to those of GJR-GARCH (1,1) for 

the Normal distribution, student-t & GED residual distribution. Best dataset observed with 

GED. 
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Table 4.4: The AIC and Log Likelihood for GJR-GARCH with residual distribution.  

MODE

L  

ERROR DISTRIBUTION  AIC  LOG 

LIKELIHOOD  

GJR-GARCH 

(1,1)  

Normal Distribution.  -0.5541  103.0827  

Student-t Distribution  -0.8869  107.4905  

Generalized Error 

Distribution  -0.90123  107.815  

GJR-GARCH 

(1,2)  

Normal Distribution.  -0.5572  103.134  

Student-t Distribution  -0.8863  107.4926  

Generalized Error 

Distribution  -0.9109  107.8178  

GJR-GARCH 

(2,1)  

Normal Distribution.  -0.5547  103.1101  

Student-t Distribution  -0.8855  107.4919  

Generalized Error 

Distribution  -0.9100  107.8151  

GJR-GARCH 

(2,2)  

Normal Distribution.  -0.5560  103.1375  

Student-t Distribution  -0.8852  107.4975  

Generalized Error 

Distribution  -0.9095  107.8196  

 

Based on AIC and LL value on the results on table 4.5, GJR-GARCH (1, 1) with 

generalized error distribution (GED) residual distribution appears to be the model that best 

fits the data.  
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4.7 EGARCH MODEL.  

4.7.1 E-GARCH (1,1) with Error distribution QQ Plots.  

  

Figure 4.7 The QQ plot for E-GARCH (1,1) with  residual distribution.  

The norm - QQ plot suggests that the data is a poor fit when the residual distribution is 

Normal, thus the data is possibly non-normal. This is clearly indicated by the failure of the 

data to be linear at the tails suggesting a more heavily tailed distribution for the residuals. 

The std – QQ plot seems to have a relatively fair fit with student-t distribution being the 

residual distribution. GED best fits the data linearly. 
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4.7.2 E-GARCH (1,2), E-GARCH (2,1), E-GARCH (2,2)  with Normalized, Student - 

t and GED Error distribution QQ plots.  

  

Figure 4.8 The QQ plot for E-GARCH (1,2), E -GARCH (2,1) & E -GARCH 

(2,2)with residual distribution.  

The QQ plot for E-GARCH have similar properties to those of E-GARCH (1,1) for the 

residual distribution. Therefore, just like the GARCH, and GJR GARCH models, GED 

residual distribution best fits the data implying that the data is heavily tailed.  
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Table 4.5:  E-GARCH with residual distribution.  

MO

DEL  

ERROR 

DISTRIBUTION  

AIC  LOG 

LIKELIHOOD  

E-GARCH 

(1,1)  

Normal Distribution  -0.6499  104.3484  

Student-t Distribution  -0.9047  107.7257  

Generalized Error 

Distribution  -0.9128  107.8332  

E-GARCH 

(1,2)  

Normal Distribution  -0.6528  104.3966  

Student-t Distribution  -0.9041  107.7273  

Generalized Error 

Distribution  -0.9126  107.8401  

E-GARCH 

(2,1)  

Normal Distribution  -0.5572  103.1434  

Student-t Distribution  -0.9036  107.731  

Generalized Error 

Distribution  -0.9122  107.8453  

E-GARCH 

(2,2)  

Normal Distribution  -0.6517  104.4025  

Student-t Distribution  -0.9029  107.7324  

Generalized Error 

Distribution  -0.9111  107.8399  

  

Based on AIC and LLvalue on the results on table 4.6, E-GARCH (1,1) with residual 

distribution being generalized error distribution is the model that best fits the data.   
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4.8 Model Comparison and Selection 

Table 4.6: The comparison of GARCH (1,1), GJRGARCH (1,1) & E-GARCH (1,1).  

MODEL  ERROR  

DISTRIBUTION  

AIC  LOG 

LIKELIHOOD  

GARCH (1,1)  Generalized  -0.901778  107.677  

GJR-GARCH 

(1,1)  

Generalized -0.90123 107.815  

E-GARCH 

(1,1)  

Generalized -0.9047  107.7257  

  

Based on the results in table 4.7, the model that appears to best fit the dataset is E-GARCH 

(1,1) with generalized error distribution. The E-GARCH model is a better fit since it can 

capture the leverage effects. The E-GARCH model also has an advantage over the GJR-

GARCH model in that, even if the parameters are negative, variance remains positive 

because the variable modelled is ln (𝛿𝑡2).   

Additionally, the QQ-plots, AIC and Log Likelihood suggested that E-GARCH model 

with generalized error distribution is a better fit for the dataset than E-GARCH (1,1) with 

student-t residual distribution. The chosen model is E-GARCH (1,1) with GED.  

4.9 THE SIMULATION.  

4.9.1 Conditional SD Simulation Density  

A simulation with the model E-GARCH (1, 1) appears to fit the structure of the original 

return series as depicted in Figure  4.11 and Figure 4.12 below:  
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Figure 4.9: Conditional standard deviation simulations  
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 4.9.2 Return Series Simulation Path Density  

  

Figure 4.10: Return series simulation path density.  
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 4.10 Residual Analysis of the Models 

Table 4.7: E-GARCH (1,1) with GED parameter estimates.  

Conditional Variance Dynamics        

GARCH 

Model       E-GARCH (1,1)     

Mean Model        ARFIMA(0,0,0)     

Distribution 

Model     

   GED     

Optimal Parameters     

Parameter  Parameter  Estimate      

Standard 

Error     t-value     P-Value  

Omega  -0.558348    0.349971     -1.5954     0.110621  

Alpha1  0.047247      0.026697     2.1443     0.032010  

Beta1  0.950922      0.030666     31.0090    0.000000  

Gamma1  0.427086      0.120499     3.5443      0.000394  

Shape  0.781789      0.025126     31.1151    0.000000  

  

The results gives positive value of Gamma1 and significant at 1% level of significance. 

The magnitude is 0.427086 and the sign is positive. Past events have effects on the future 

volatility. The  values of α 1  and  β 1  are significant at 1% significance level.  

The sum of α1 + β1 = 0.998169 <  1. Hence persistence in volatility 

Mean equation :  Xt = Zt + 0.047247Zt-1      

Our variance equation becomes:  
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Table 4.8: E-GARCH (1,1) with GED conditional distribution Weighted Ljung-Box 

Test on Standardized Residuals 

 Lag  Test 

Statistic    

P-value  

Lag[1]                    
3.476      0.06226  

Lag[2*(p+q)+(p+q)-1][2]    
4.933      0.04238  

Lag[4*(p+q)+(p+q)-1][5]    
7.775      0.03351  

𝑯𝒐: No serial correlation    

 

Table 4.9: E-GARCH (1,1) with GED conditional distribution Weighted Ljung-

Box Test on Standardized Squared Residuals  

Lag  Test Statistic    P-value  

Lag[1]                    0.006725    0.9346  

Lag[2*(p+q)+(p+q)-1][5]    0.013184     1.0000  

Lag[4*(p+q)+(p+q)-1][9]    0.016688     1.0000  

The high p-values lead us to accept the null hypothesis which is further strengthened by 

the observation of the ACF. 

Table 4.10: E-GARCH (1,1) with GED conditional distribution Weighted ARCH LM 

Tests results.  

ARCH Lag  Test 

Statistic    

Shape  Scale  P-value  

ARCH Lag[3]    0.0007012    0.500    2.000     0.9789  

ARCH Lag[5]    0.0038767    1.440    1.667     0.9999  

ARCH Lag[7]    0.0057890    2.315    1.543     1.0000  
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 The ARCH LM tests the null hypothesis that there are no more ARCH effects in the 

residuals. From the p-values as listed above, at 1%,5% and even 10% level of 

significance, we can conclude that there are no more ARCH effects in the residuals which 

indicates that the volatility model is correctly specified.  

  4.11 FORECASTING  

 

           Figure 4.11 Ten Years Volatility Forecast 

From Figure 4.11  it is clear that the next 10 years predictions for the inflation rate are 

constant. Inflation rate stability at 5% in the previous three months. Here, for the next 10 

years predictions are plotted as blue line, 80% prediction interval as a blue shaded area 

and the 95% prediction interval as grey shaded area. 

Forecasts from ETS(A,N,N)
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Figure 4.12: Monthly Forecast Series and Forecast Volatility.  
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CHAPTER FIVE  

SUMMARY CONCLUSION AND RECOMMENDATION  

5.1 SUMMARY 

Modelling and forecasting the volatility of returns in stock markets has become a fertile 

field of empirical research in financial markets. It is also crucial to various groups such as 

importers, exporters, investors, policy makers, governments etc.  

This study opted for all specifications of the GARCH models although empirical evidence 

shows that the lower specifications are able to sufficiently capture the characteristics of 

inflation rates while at the same time upholding the principle of parsimony. Various 

GARCH, GJR-GARCH and E-GARCH models were fitted with variations being made to 

the conditional distribution used i.e. normal, student-t and generalized error distribution.. 

The E-GARCH model provides a better fit than the GARCH model and its advantages 

over the GARCH model are that first, it can capture leverage effects and secondly, that 

there is no restriction that the parameters 𝛼1 and β1 must be positive.  

5.2 CONCLUSION 

Based on the empirical results presented, the following can be concluded; the study finds 

strong evidence that inflation monthly returns could be characterized by the above 

mentioned models. For the period specified, the empirical analysis was supportive to the 

symmetric volatility hypothesis, which means returns are volatile and that positive and 

negative shocks (good and bad news) of the same magnitude have the same impact and 

effect on the future volatility level. The parameter estimates of the GARCH (1,1) models 

(alpha and beta) indicates a high degree of persistent in the conditional volatility of returns 

on the Kenyan inflation rates which means an explosive volatility. To summarize, the 
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results from all GARCH specifications applied in this study for the periods explain that 

explosive volatility process is present in inflation returns over the sample period.  

5.3 RECOMMENDATION  

This study recommends that univariate time series models, where other economic 

variables that could influence the volatilities in the monthly rate of inflation such as 

exchange rates, amount of money supply, interest rates and others will be modelled along 

the rates of inflation. The inclusion of these other variables could help identify which of 

them contribute more to the variability in the monthly rates of inflation in Kenya. Another 

important area of research in modelling inflation rate would be use of Bayesian statistics  
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APPENDIX: R CODES 

library(fGarch) 

#Inflation Rates 

data=read.csv("inflationrates.csv");data 

mydata=data$inflation;mydata 

#Simple Returns 

p=c() 

for(i in 2:length(mydata)){ 

s.r=(mydata[i]/mydata[i-1])-1 

p=c(p,s.r) 

} 

Inflation=p;Inflation 

basicStats(Inflation) 

#log Returns 

logInflation<-diff(log(mydata)); logInflation 

basicStats(logInflation) 

acf(logInflation) 

pacf(logInflation) 

plot.ts(logInflation) 

sqrdlogInflation= logInflation^2; sqrdlogInflation 

plot.ts(sqrdlogInflation) 

acf(sqrdlogInflation) 

pacf(sqrdlogInflation) 

plot.ts(sqrdlogInflation) 

Box.test(logInflation,lag=1,type='Ljung') 

ai=logInflation-mean(logInflation) 

Box.test(ai^2,lag=1,type='Ljung') 

m2=garchFit(~garch(1,1),data=logInflation,trace=F) 

summary(m2) 

plot(m2) 

 

symoredata=read.csv("symore data.csv",header=T) 

attach(symoredata) 

dat1=symoredata$inflation 

ts.plot(dat1,main="RAW DATA PLOT Inflation",ylab="prices(Inflation)") 

dat2=symoredata$CPI 

ts.plot(dat2,main="RAW DATA PLOT CPI",ylab="prices(CPI)") 

library(rugarch) 

library(parallel) 

 

#Log return 

l.rinflation=diff(log(dat1)) 

ts.plot(l.rinflation,main="log returns plot inflation",ylab="log 

returns(inflation)") 

 

 

# testing ARCH effects 

cbind(Box.test(l.rinflation,lag=12),Box.test(l.rCPI,lag=12)) 

 

library(rugarch) 

library(parallel) 

 

#GARCH(1,1)-Normalized Error Distribution 
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garch11.norm=garchFit(formula = ~ garch(1, 1), data =l.rinflation,cond.dist 

= c("norm"),include.mean =F) 

summary(garch11.norm) 

plot(garch11.norm) 

#GARCH(1,1)-Student-t Error Distribution 

garch11.std=garchFit(formula = ~ garch(1, 1), data =l.rinflation,cond.dist = 

c("std"),include.mean =F) 

summary(garch11.std) 

plot(garch11.std) 

 

#GARCH(1,1)-GED Error Distribution 

garch11.ged=garchFit(formula = ~ garch(1,1), data =l.rinflation,cond.dist = 

c("ged"),include.mean =F) 

summary(garch11.ged) 

plot(garch11.ged) 

 

#GARCH(1,2)-Normalised Error Distribution 

garch12.norm=garchFit(formula = ~ garch(1, 2), data =l.rinflation,cond.dist 

= c("norm"),include.mean =F) 

summary(garch12.norm) 

plot(garch12.norm) 

 

#GARCH(1,2)-Student-t Error Distribution 

garch12.std=garchFit(formula = ~ garch(1, 2), data =l.rinflation,cond.dist = 

c("std"),include.mean =F) 

summary(garch12.std) 

plot(garch12.std) 

#GARCH(2,1)-Normalised Error Distribution 

garch21.norm=garchFit(formula = ~ garch(2,1), data =l.rinflation,cond.dist = 

c("norm"),include.mean =F) 

summary(garch21.norm) 

plot(garch21.norm) 

 

#GARCH(2,1)-Student-t Error Distribution 

garch21.std=garchFit(formula = ~ garch(2,1), data =l.rinflation,cond.dist = 

c("std"),include.mean =F) 

summary(garch21.std) 

plot(garch21.std) 

 

#GARCH(2,2)-Normalised Error Distribution 

garch22.norm=garchFit(formula = ~ garch(2,2), data =l.rinflation,cond.dist = 

c("norm"),include.mean =F) 

summary(garch22.norm) 

plot(garch22.norm) 

 

#GARCH(2,2)-Student-t Error Distribution 

garch22.std=garchFit(formula = ~ garch(2,2), data =l.rinlation,cond.dist = 

c("std"),include.mean =F) 

summary(garch22.std) 

plot(garch22.std) 

#gjr garch with student t disribution,,,, 
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spec.gjrmodel1.std=ugarchspec(variance.model=list(model="gjrGARCH",garchOrde

r=c(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.mode

l="std") 

gjrmodel1.std=ugarchfit(l.rinflation,spec=spec.gjrmodel1.std) 

gjrmodel1.std 

plot(gjrmodel1.std,which=9) 

 

#gjr garch with ged disribution,,,, 

 

spec.gjrmodel1.ged=ugarchspec(variance.model=list(model="gjrGARCH",garchOrde

r=c(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.mode

l="ged") 

gjrmodel1.ged=ugarchfit(l.rinflation,spec=spec.gjrmodel1.ged) 

gjrmodel1.ged 

plot(gjrmodel1.ged,which=9) 

 

 

#gjr garch with student t disribution,,,,CPI 

 

spec.gjrmodel1.std=ugarchspec(variance.model=list(model="gjrGARCH",garchOrde

r=c(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.mode

l="std") 

gjrmodel1.std=ugarchfit(l.rCPI,spec=spec.gjrmodel1.std) 

gjrmodel1.std 

plot(gjrmodel1.std,which=9) 

 

#gjr garch with ged disribution,,,,CPI 

 

spec.gjrmodel1.ged=ugarchspec(variance.model=list(model="gjrGARCH",garchOrde

r=c(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.mode

l="ged") 

gjrmodel1.ged=ugarchfit(l.rCPI,spec=spec.gjrmodel1.ged) 

gjrmodel1.ged 

plot(gjrmodel1.ged,which=9) 

 

 

# E-garch models with normal plus ged one 

 

spec.emodel1.norm=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c

(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="

norm") 

emodel1.norm=ugarchfit(l.rinflation,spec=spec.emodel1.norm) 

emodel1.norm 

plot(emodel1.norm,which=9) 

 

 

 

spec.emodel1.ged=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(

1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="g

ed") 

emodel1.ged=ugarchfit(l.rinflation,spec=spec.emodel1.ged) 

emodel1.ged 

plot(emodel1.ged,which=9) 
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# E-garch models with normal 

 

spec.emodel1.norm=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c

(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="

norm") 

emodel1.norm=ugarchfit(l.rCPI,spec=spec.emodel1.norm) 

emodel1.norm 

plot(emodel1.norm,which=9) 

 

# E-garch models ged 

 

spec.emodel1.ged=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(

1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="g

ed") 

emodel1.ged=ugarchfit(l.rinflation,spec=spec.emodel1.ged) 

emodel1.ged 

plot(emodel1.ged,which=9) 

 

 

spec.emodel1.ged=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(

1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="g

ed") 

emodel1.ged=ugarchfit(l.rCPI,spec=spec.emodel1.ged) 

emodel1.ged 

plot(emodel1.ged,which=9) 

 

spec.eGARCH11.ged=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c

(1,1)), 

mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="ged" 

,fixed.pars=list(mu = 0,omega=-1.496285,alpha1=0.076862,beta1=0.829872, 

gamma1=0.539965,shape=1.201080)) 

set.seed(123) 

egarch11.ged.sim=ugarchpath(spec.eGARCH11.ged, n.sim=2700) 

egarch11.ged.sim 

 

#Conditional SD Simulation Density 

#Use the plot method to plot simulated series and conditional volatilities 

plot(egarch11.ged.sim, which=3, col="red") 

lines(density(l.rinflation),col="black") 

legend('topright', c('Simulated returns', 'Original returns'),  

col =c("blue","black"), lty = c(1, 1), bty = 'n') 

 

#Conditional SD Simulation Density 

#Use the plot method to plot simulated series and conditional volatilities 

plot(egarch11.ged.sim, which=3, col="red") 

lines(density(l.rinflation),col="black") 

legend('topright', c('Simulated returns', 'Original returns'),  

col =c("red","black"), lty = c(1, 1), bty = 'n') 

 

library(parallel) 

library(rugarch) 
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spec.eGARCH11.ged=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c

(1,1)), 

mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="ged" 

,fixed.pars=list(mu = 0,omega=-0.558348,alpha1=0.057247,beta1=0.950922, 

gamma1=0.427086,shape=0.781789)) 

set.seed(123) 

egarch11.ged.sim=ugarchpath(spec.eGARCH11.ged, n.sim=376) 

egarch11.ged.sim 

 

#Conditional SD Simulation Density 

#Use the plot method to plot simulated series and conditional volatilities 

plot(egarch11.ged.sim, which=3, col="red") 

lines(density(l.rinflation),col="black") 

legend('topright', c('Simulated returns', 'Original returns'),  

col =c("blue","black"), lty = c(1, 1), bty = 'n') 

 

plot(egarch11.ged.sim, which=4, col="red") 

lines(density(l.rinflation),col="black") 

legend('topright', c('Simulated returns', 'Original returns'),  

col =c("red","black"), lty = c(1, 1), bty = 'n') 

# Conditional SD Simulation Path 

plot(egarch11.ged.sim, which=1) 

 

#FORECASTING 

 

# predictive accuracy 

library(forecast) 

accuracy(logInflation) 

# predict next ten future values 

library(forecast) 

forecast(logInflation, 10) 

plot(forecast(logInflation, 10)) 

 

forc=ugarchforecast(emodel1.ged,n.ahead=100,mse=c("cond"),nx=round(0.25*leng

th(l.rinflation)),plot=T) 

plot(forc) 

plot(forc,which=3) 

#Volatility analysis. 

plot(egarch11.ged.sim, which=1) 

 


