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ABSTRACT 

Logistic regression has been applied for classification and to determine the factors which affects 

the behavioral score of the consumer. Cumulative logistic regression with a latent variable link 

as link function determines the dynamic of consumers’ behavioral score. A multivariate 

describes the dependency of credit risky assets in a portfolio. Credibility theory combines the 

application transition from the credit bureau with behavioral transition matrix from consumer 

performance and experience. 
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CHAPTER ONE 

1.1 Background 

Unregulated finance companies in Kenya are thriving despite the requirement of the 

Microfinance Act of 2006 that anyone conducting microfinance business has to be licensed. 

These ventures depend on the sanctity of contract law to preserve them in business. They are 

operated through ambiguous, contracts that are frequently misinterpreted by the borrower hence 

unrealistic interest payments. In Part II Section 9 (1) (c) of that Microfinance Act, states that a 

license can be revoked and the business shut down if the business being conducted is detrimental 

to the interests of its depositors or customers it is not clear why loan sharks in Kenya have not 

been challenged as the loan sharks refer to their dealings as "microfinance." 

Mobile and other credit products are being been developed with main objective is to enable the 

borrowers access small amounts of money. This also supports the borrowers to building their credit 

profiles and facilitate access to a higher loan limits in future. This advancement also provides a 

remedy for the ineffectiveness of the conventional lenders in measurement and management of 

credit risks.  

Most of these credit providers are high a growth start-ups and therefore they must develop, test 

and utilize models to assess the risk within a very short time period. The main objective for this 

lenders is to grow their business with not only a high level of automation but also with a high 

degree of cautiousness and risk management. They are required to develop registered analytics 

that apply to their data to maintain a competitive edge in target markets and compete with 

established lenders. The models must be less costly and be efficient in response to loan applications 

thus makes credit risk modeling vital in their competitive advantage. 

The credit risk models developed should be able to perform credit analysis, credit fraud 

identification and prevention, credit pricing, collections and portfolio management. These lenders 

collect and analyze their own customer-specific data and build their unique capabilities, 

efficiencies and competitive advantage. The process of data gathering and analysis of data can be 

lengthy, complex and error-prone hence the need to develop model from scratch to facilitate the 

analysis of proprietary data in a timely and efficient manner. 

These models should be viably cost effective to diverse needs for economically actively lower 

income household, business and enable the lenders to make decisions in low costs. New models 

http://www.ehow.com/legal/
http://www.ehow.com/business/
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that employ the increased computing power and can capture new sources of data can be developed 

although these new ideas are confronted with challenges with privacy laws and customers 

preferences. 

These models provides a platform for companies to profitably serve the unbanked population and 

help the society toward the full inclusion goal that is these people have access to range of quality 

,affordable and appropriate financial services which is a priority to most governments worldwide. 

The providers help population make good financial decisions, offer right noncredit products like 

savings and insurance and also conducting marketing and communications in effective ways that 

fits these populations. 

Predictive analysis is vital to every lender in determination of credit worthiness of the borrowers. 

Historical data provided a basis for credit extension. These historical data sources like credit report 

and salary history aided the credit providers in assessment, predictions and risk classification by 

assigning scores based on the identity, ability and willingness to pay. This model utilizes new 

nontraditional sources of data and information to facilitate a complete understanding of the 

household financial needs. However these methods less effective to the unbanked populations 

because they have no access to formal financing hence no record of past borrowing behavior. The 

credit worthiness of these borrower is difficult to determine as most of these lower income have 

wages in cash and there is no formal savings that can be used as collateral.  

Most of the population do not regular fixed payments as most are self-employed and depends on 

a portfolio of inconsistent income generating activities.in order for the modelers to have an 

effective credit scoring strategies for this group of borrowers, they are required to identify efficient 

sources of data and appropriate ways of accessing and converting them into them into credit 

insights. There are new data standards and protocols and new tools to bring together disparate data 

sets, matching and comparing them to bring credit risk insights. 
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1.2 Problem Statement 

Modelling of dependency of credit risky assets is important as it has a significant impact measuring 

and managing credit risky assets. A model to describe this dependency should therefore defined. 

Copulas and Monte Carlo techniques are the major approaches that explains the dependency of 

credit risky portfolios. The use of copulas was introduced by Li(2000) and its main advantages is 

that it can capture the dependency of credit risk when the loss distribution do not belong to the 

same elliptical class  and it can also incorporate more than two credit risks. A multivariate markov 

chain model provides a not only convenient but also a natural way to describe the dependency of 

credit risky assets. Thomas s et al (2002) suggested that a market view to be a mixture of beliefs 

between which is determined by both historical movements of ratings and a specified subjective 

view by the experts opinions. 

Ching et al (2002) used a discrete homogeneous multivariate markov chain model for dependency 

of credit risky portfolio of securities. They applied credibility theory to combine the two sources 

of information from the historical date and the empirical sources and also to estimate the unknown 

parameters.  

Our main objective is to develop a multivariate markov chain model for a portfolio of consumer 

loans for the unbanked populations. We demonstrate the impact of the nontraditional sources of 

data from the population on the generic transition matrix based on the cumulative logistic 

regression. We use credibility theory to combine the application and behavioral scores transitions 

and also estimate the unknown parameters. We derive our portfolio values from the Monte Carlo 

simulation and show the consistency of credit measures based on the behavioral scores. 
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1.3 Objectives 

The objective of this study is 

i. To show impact of modelling of dependency of credit risky assets of the consumer loans 

in measuring and managing credit risky portfolios. 

ii. To demonstrate how the various behavioral characteristics of a borrower determines the 

creditworthiness of the borrower. 

 1.4 Justification 

This research project builds a model by use of nontraditional sources of information that will 

enable the creditors to measure and manage the credit risk and maximize return on their 

investment. This model enables the unbanked population to access to a credit products despite 

having no credit history. This also helps the debtors build their credit profiles which enable them 

access credit from different sources.  

1.5 Scope 

This study focuses on the financial institutions in Kenya which are offering short term credit to a 

population which they do not have their credit history. 

1.6 Limitation 

Privacy issues is the key limit factor in this study. 
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CHAPTER TWO 

2.1 Literature Review 

2.1.1 Introduction 

(Bonfim, 2009) and (Schmit, 2004)  defined default as a situation when an debtor is unlike to pay 

all their obligations or past due to more than ninety days on any material credit obligation.. 

2.2.2 Probability of Default 

(Crouhy, 2000) described credit risk modelling to be estimating probability of default (PD), the 

loss given default (LGD) and correlation across default and losses. Probability of default (PD) and 

the loss given default (LGD) are key parameters of internal rating based (IRB) approach and is 

central to Basel II. They enable banks to compute their capital charges for each exposure. 

2.2.3 Loss Given Default 

Loss given default is equivalent to the recovery rate and it is defined as the loss rate on a credit 

exposure if a counterparty defaults. There are three classes of loss given defaults models for 

individual loan or instruments namely market, workout and implied market loss given default. 

Market loss given default is estimated from market price of bonds or tradable loans and it is highly 

limited in application since after default market is only available for corporate bonds. 

 (Dermine, 2006) suggested the application of the workout loss given default and it is calculated 

from the recovered part of the exposure arising in the long running workout process and discounted 

to the default rate. The disadvantage for this approach is bankrupt settlements. 

2.2 Credit Risk Models 

There are two important models for credit risk measurement and management namely structural 

approach and reduced form approach which can be described as individual level reduced-form or 

portfolio reduced-form models 

2.2.1 Structural Credit Risk Models 

Merton (1974) introduced structural approach that assumes that the value of the firm assets is 

driven by geometric Brownian motion. The biggest disadvantage of this approach is the simplified 

assumptions in its derivation, but it has opened a room for extensions for instance (Geske, 1977) 
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Extension from the single debt maturities to various debt maturities by the compound option 

modelling and  (Leland, 1996) allowed firms to continuously issue debts of a constant but infinite 

time to maturity. (Duffie, 2005) Compared (Merton, 1974) assumption that the default occurs in 

only at the maturity date.  

Black and Cox introduced the First passage time model structural model which states that default 

event can happen not only at the debt maturity but also prior to that date as long as the firm asset 

value falls to the pre-specified barrier. With the first passage ideas, other parameters used by 

(Merton, 1974)were extended to be dynamic for instance (Longstaff, 1995)treated the short term 

risk-free interest as stochastic   which converges to long term risk-free interest rate that is 

negatively correlated to the asset value. (Tarashev, 2005) Defined and compared the structural 

model as exogenous and endogenous default. The exogenous structural model defines the default 

as when the asset value fall below a threshold value while endogenous default, the obligor can 

choose time of default strategically. (Anderson, 1996) Extension allowed firms to renegotiate the 

term of the contract and when the default level is reached, the firm is declared as either bankrupt 

or a renewed contract with higher interest debt is issued. 

(Shibata, 2009)Proposed a BSM structural model for banks recovery process for a company in 

danger of bankruptcy. This model states that in a situation where investor bankrupts, bank can 

either continue to run the bank or liquidate. This method defined the banks collecting process with 

option approach and game theory. 

(Perli, 2004)Applied corporate credit risk structural model to model consumer lending. They 

assumed that a customer is deemed to have defaulted if his assets are below a specified threshold. 

This approach disregarded the key issues of the consumer defaults as consumer lending is more 

about cash flows and financial fraud. 

(Andrade, 2007)Described structural risk model for consumer loans with the behavioral score as 

the proxy of credit-worthiness of the borrower. Default occurred when the value of the reputation 

for credit worthiness in terms of access to further credit dropped below the cost of servicing the 

debt. 

2.2.2 Reduced Form Credit Risk Models 

(Artzner, 1995) and (Duffie.D, 1996) considered the reduced- form approach assumes that 

default is an exogenous event and its occurrence is governed by a random point process. 

 Individual level reduced form models  
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 (Altman, 1968) Proposed these models also referred to as credit scoring models and it identifies 

accounting variables that have statistical explanatory power to differentiate between the defaulters 

and non-defaulters. It applies linear or binomial models to regress the defaults and estimate the 

coefficients. The applicants are then scored depending on whether they are good or bad. 

(Altman E. S., 1998)Studied the use of credit scoring while (Altman E. , 1997) surveyed the 

historical explanatory variables in credit scoring models and found that most studies used financial 

ratios that measures profitability, leverage and liquidity. 

(Jacobson, 2003)Developed bivariate probit model and proposed a method of calculation of 

portfolio without bias. (Lin, 2009)Proposed a new approach by three kinds of two stage hybrid 

models of logistic regression artificial neutral network. (Altman E. , 2005) specified a credit 

scoring for emerging market corporate bonds. (Luppi, 2007) applied logit model to nonprofit 

SMES and found that traditional accounting based credit scoring model held less explanatory 

power in nonprofit firms than in for profit firms. 

Credit scoring models have been criticized because of its explanatory variables are based on 

accounting data and therefore cannot highlight the dynamic borrowers conditions. (Argawal, 

2008)Study showed market based model such as structural models are better in forecasting distress 

than credit scoring models. It also manifested that in term of predictive accuracy using UK data, 

their results were almost the same as for the BSM structural model and Z-score model. 

Portfolio Reduced-Form Models 

(Jarrow, 1992)) introduced this models and it is associated with risk neutral technique Jarrow and 

Turnbull decomposed the credit risk premium and the problem of credit risk modelling became 

how to model probability of default (PD) and loss given default (LGD). Reduced form models can 

capture the firm’s credit risk hence it can be specified in different stochastic process models.  

Markov chain 

Markov chain is a good example of portfolio reduced-form credit risk model introduced by (Jarrow 

R. S., 1997).It considers default as an absorbing state and that default time is a continuous markov. 

It also assumes a fixed probabilities for credit quality changes estimated from historical credit 

matrices and a fixed recovery rate (RR) in the event of default. 

(Feng.D., 2008)Fitted ordered probit model to rating transition and view rating transitional 

probabilities as functions of latent variables as unobservable factors while (Nickell, 2000)assumed 

that the latent variables were derived from observable factors. 
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(Hurd, 2006)Generalized the markov chain to describe the dynamics of the corporate credit risk. 

(Kalotychou, 2006)applied ordered probit model in sovereign credit migration estimation and 

compared the homogeneous and heterogeneous estimators. (Gagliardini, 2005)applied ordered 

probit model to estimate migration correlations and suggested that the traditional cross-sectional. 

Monteiro et al (2006) suggested the use of finite non homogeneous continuous time semi markov 

process  to model time dependent  matrices  and showed that non parametric parameters estimation  

of time dependent  matrices. 

(Kadam, 2008)extended the discrete time model by Jarrow et al (1997) continuous time markov 

chain in their empirical studies. Hidden markov models which is a statistical model in which the 

system being modelled assumed to be a markov process with an unobserved states used in 

forecasting of quantiles of default rates used in credit risk modelling. (Banachewicz, 2007) studied 

hidden markov models and tested the sensitivity of the forecasted quantiles if the underlying 

hidden markov models mis-specified. 

(Frydman, 2008) and (Kadam, 2008)applied markov mixture model is extended to a mixture of 

two markov chains where the mixing is on the speed of the movement of credit ratings. The only 

difference is that estimation of the original markov chain was based on maximum likelihood while 

estimation of the mixture was based on the Bayesian estimation. 

(Li, 2000) Introduced the use copula functions in modelling of dependency of credit risky 

securities and showed the main advantages of copula that is can be used to capture  the dependency 

of credit risks when credit loss distribution do not belong to the same elliptical class and can 

incorporate the dependency of more than two credit risks. (Embrechts, 1999 ) Introduced the use 

of copula in modelling credit risks when multivariate distribution is asymmetric. (Umberto 

Cheruibini, 2004)Discussed the use of simulation methods with various copulas for the modelling 

of dependent risks. (Kijima M, 2002) Applied multivariate markov chain model to replicate the 

development of correlated ratings of several credit risks to solve the pricing and risk measurement 

problems. They assumed the change in credit ratings over a period of time was driven by a single 

index model that consisted of the systematic and the firm specific components. The systematic 

component was described by a single column factor and the unknown parameters were estimated 

by minimizing the squared error based on the historical data only. 

 (Thomas. L C, 2002) Proposed that historical data alone was inadequate to describe the future 

movements in ratings hence an expert opinion should be incorporated. (Buhlmann, 
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1967)Introduced credibility theory to combine two different sources of information by determine 

the weights to be assign to each source. He also introduced the least square approach for estimation 

of credibility premiums without imposing string parameter assumptions. This theory is convenient 

to merge both the historical rating data and another source of information. 

(Das, 2004) In their study of correlated default risk, they showed that the joint correlated default 

risk probabilities varied substantially over time hence a more realistic way to describe time varying 

behavior of risk. They also noted that the estimation procedure was complicated and less 

analytical. 

Hu et al (2002) proposed an empirical Bayesian for estimation of transition matrices for the 

government to evaluate and manage risks of emerging markets .Transition matrices was estimated 

and assumed to be a linear combination of empirical transition matrix and model based updating 

matrix evaluated from an ordered probit model. They adopted empirical Bayesian techniques for 

estimating contingency tables and selected weights of the linear combination of prior and updating 

matrices by the goodness of fit chi square statistics. 

 Lee (1997), Bernado and Smith (2001) and Robert (2001) provide an overview and detailed 

discussion on the choice of the prior matrix. Transition matrix is determined based on prior 

knowledge of ratings of other firms with or without the same industry.  

One important statistic for credit risk measurement and management is conditional expectation of 

aggregate loss of portfolio at future time given the available current information. Elliot et al (1997) 

provided the evaluation of the conditional predictive probability which is important in evaluation 

of credit value at risk.  

Acerbi and Tasche (2001) and Hardy (1999) pointed out the addition of an adjustment term to 

Expected Shortfall (ES) in order to make the market coherent when loss distribution is discrete. 

This gave a definition of Expected Shortfall of credit portfolio at a future time given information 

up to current with a given probability level. 

(Rosch, 2004) Took a variant of one of one factor credit metrics model and used the empirical 

correlation between different consumer loans and try to build the economic variables to explain 

differences during different parts of the business cycle. (Malik, 2010) Developed a hazard model 

of the time to default of consumer loans where risk factors were based on the behavioral scores, 

the age of the loan and economic variables. 
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(Belloti, 2009)  Used proportional hazard model to develop a default risk model for consumer 

loans. Their investigation was to find out which economic variables might be most appropriate. 

  CHAPTER THREE 

3.1 METHODOLGY 

3.1.1 Markov chain   

A Markov property implies that the future value of a process is depends on the current value and 

is independent of the past history. A markov process is any process that satisfies the markov 

process. A markov chain refers to a markov process in discrete time and with a discrete state space. 

Transition graph 

A graphical representation of a markov chain has its states represented by circles and each arrow 

representing possible transitions. The probability of transition between two states can be 

represented in form of a transition matrix (𝑖, 𝑗) entry with 𝑖𝑡ℎ row   and 𝑗𝑡ℎ column with the 

probability of moving one step from state 𝑖 to state 𝑗 each row adding up to one at any time. 

Chapman Kolmogorov 

These are equations that allows calculation of general transitions probability in terms of one step 

probabilities 𝑃𝑖,𝑗
(𝑛,𝑛+1)

. 

Let 𝑃𝑖,𝑗
(𝑚,𝑛)

 be the probability of being in state 𝑗 at time 𝑛 having being been in state 𝑖 at time 𝑚  

Pr
𝑋𝑚+1=𝑗

𝑋𝑚=  𝑖
⁄ =𝑃𝑖,𝑗

(𝑚,𝑚+1)
 

The transition probability of a discrete markov chain obeys chapman-Kolmogorov equations. One 

step transition probability 𝑃𝑖,𝑗
(𝑛,𝑛+1)

  with initial probability distribution 𝑞𝑘= 𝑃(𝑋0=𝑘)is used to 

deduce the probability of any path. 

Time –Homogeneous Markov Chain 

Time homogeneous markov chain is a markov chain whose one step probabilities are time 

independent   

𝑃𝑖,𝑗
𝑗,𝑛+1

= 𝑃𝑖,𝑗 

The Chapman –Kolmogorov equations is given by  
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𝑃𝑖,𝑗
(𝑛−𝑚)

=∑𝑃1𝑘
(𝑖−𝑚)

𝑃𝑘𝑗
(𝑛−1)

𝑘𝜖𝑆

 

The normalization condition     ∑ 𝑃𝑖𝑗 = 1𝑗𝜖𝑆   for all 𝑖implies that each row of P must add to one 

∑ 𝑃𝑖𝑗 = 1𝑗𝜖𝑆 , for all 𝑖 

Time inhomogeneous 

Transition probabilities cannot simply be denoted 𝑃𝑖𝑗 because they will depend on the absolute 

values of time rather than just time difference. Transitional probabilities depend not only on the 

length but also when the process starts. 

3.1.2 The period 

A state 𝑖  is said to be periodic with d > 1 if a return to i is possible only in a number of steps that 

is multiple of 𝑑.A state is a periodic if it is not periodic. There exists  lim
𝑛→∞∀

𝑃𝑖𝑖
(𝑛)

 .for the aperiodic 

states. 

3.1.3 Long Term distribution of markov chain 

A markov chain that settles in to its stationary distribution after long period of time then its 

distribution to tend to the invariant distribution 𝜋.If the above convergence condition holds, then 

𝑃𝑖𝑗
(𝑛)

 will be close to 𝜋𝑗 for a larger fraction of time.We say that 𝜋𝑗 , 𝑗 ∈ 𝑆 is a stationary population 

distribution   for a markov chain with transition matrix 𝑃 if and if only the following condition 

holds  

i. 𝜋𝑗 = ∑ 𝜋𝑖𝑃𝑖𝑗𝑖∈𝑆     

ii. 𝜋𝑗 ≥ 0 

iii. ∑ 𝜋𝑗 = 1𝑗∈𝑆  

This can be stated as 𝜋 = 𝜋𝑃 where 𝜋 is a row vector.  

Given a markov chain with infinite state space, a stationary distribution is found by solving𝜋 =

𝜋𝑃.since this is a vector it results in a set of linear programming equations. 

The above equations are said to be linearly independent implies that any four of the will always 

rearrange to give the remaining one redundant. By this linearity property any multiple solution of 

the problem above is solution and a the uniqueness of the solution comes from the normalization 

∑𝜋𝑗 = 1

𝑗∈𝑆
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3.1.4 Irreducibility 

A markov chain is said to be irreducible if any states can be reached from any other state. This 

implies that a markov chain is irreducible if given any pairs of states 𝑖, 𝑗there exist an integer n 

with 𝑃𝑖𝑗
(𝑛)

> 0. An irreducible markov chain with a finite state space has a unique stationary 

distribution 

Let 𝑃𝑖𝑗
(𝑛)

 be n step transition probability of an irreducible, a periodic markov chain on a finite state 

space, then every 𝑖 𝑎𝑛𝑑 𝑗,           lim
𝑛→∞

𝑃𝑖𝑗
(𝑛)

 =𝜋𝑗, where 𝜋𝑗 is stationary probability distribution. 

This implies that no matter what state 𝑖 you are in, the probability of ending up in state 𝑗 after a 

very long time is the same as probability of being in state 𝑗 given the stationary probability 𝜋. 

A markov chain with finite state space has at least one stationary distribution. An irreducible 

markov chain with finite state space has a unique stationary distribution and an irreducible 

aperiodic markov chain with finite state space will settle down to its unique stationary 

distribution in the long run. 

3.1.5 Modeling using Markov chains 

Modeling process for the markov chain is started by fitting a stochastic model to a set of 

observations. Assuming that the model being fitted is time homogeneous, a state space to fit the 

markov model to the observed data, transitional probabilities 𝑃𝑖𝑗 is set up. 

We denote 𝑥1 , 𝑥2, ……… , 𝑥𝑁  to be the available observations and define 

i. 𝑛𝑖 to be number of times (1 ≤ 𝑡 ≤ 𝑁 − 1) such that 𝑋𝑡 = 𝑖 

ii. 𝑛𝑖𝑗 to be number of times (1 ≤ 𝑡 ≤ 𝑁 − 1) such that 𝑋𝑡 = 𝑖 and 𝑋𝑡+1 = 𝑗 

Thus 𝑛𝑖𝑗 be observed number of transitions from state 𝑖 to state  𝑗 and 𝑛𝑖 be the observed number 

of observations from state𝑖. 

𝑛𝑖 allows 𝑡 to go up to 𝑁 − 1 rather than 𝑁 so that it equals the number of chances of a transition 

out of state 𝑖  and not just the number of times it is in state 𝑖. 

The best estimate of 𝑃𝑖𝑗=�̂�𝑖𝑗 =
𝑛𝑖𝑗

𝑛𝑖
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3.1.6 Multivariate Markov Chain Model 

This is given by  

𝑋𝑡+1
(𝑗)

= ∑𝜆𝑗𝑘

𝑛

𝑗=1

𝑃(𝑗𝑘)𝑋𝑡
(𝑘)
, 𝑓𝑜𝑟 𝑗 = 1,2, … . . 𝑛. 

The probability distribution 𝑋𝑡+1
(𝑗)

of 𝑌𝑡+1
(𝑗)

given 𝐹𝑡 depends only on 𝑌𝑡
(1)𝑌𝑡

(2)𝑌𝑡
(3)……𝑌𝑡

(𝑛)
 a markov 

property follows that is, the conditional probability distribution of the ratings of the jth credit risk 

at time 𝑡 + 1 depends on the ratings of all credit risks in the portfolio at time t. 

Equation above can be represent as matrix as below 

𝑋𝑡+1 = 

(

 
 
 
 

𝑋𝑡+1
(1)

𝑋𝑡+1
(2)

......

𝑋𝑡+1
(𝑛)

)

 
 
 
 

=

(

 
 
 
 
𝜆11𝑃

(11)𝜆12𝑃
(12)…………………𝜆1𝑛𝑃

(1𝑛)

𝜆21𝑃
(21)𝜆22𝑃

(22)… . . …… .…… . . 𝜆2𝑛𝑃
(2𝑛)

.

.

.
𝜆𝑛1𝑃

(𝑛1)𝜆𝑛2𝑃
(𝑛2)…………………𝜆𝑛𝑛𝑃

(𝑛𝑛))

 
 
 
 

×

(

 
 
 
 

𝑋𝑡
(1)

𝑋𝑡
(2)

.

.

.

𝑋𝑡
(𝑛)
)

 
 
 
 

… 

𝑋𝑡+1= Q𝑋𝑡 

 

PROPOSITION 1 

Suppose that 𝑃(𝑗𝑘) (1≤ 𝑗, 𝑘 ≥ 𝑛) are irreducible and 𝜆𝑗𝑘 > 0 then there is a vector 

𝑋 = [𝑋(1), 𝑋(2), …𝑋(𝑛)]𝑇 Such that 𝑋𝑡+1= Q𝑋𝑡  and ∑ [𝑋(𝑗)]𝑖𝑚
𝑖=1 = 1, (1 ≤ 𝑗, 𝑘 ≥ 𝑛) where [. ]𝑖 

is corresponding vector. 

Vector X is has a stationary probability distribution of the ratings of all credit risks in the 

portfolio l.e, for each j in 𝑋(𝑗) represents probability of ratings in the long run. 
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3.2 Logistic Regression 

Logistic regression describes the relationship with a binary response with one or more explanatory 

variables by applying the logit transformation to the dependent variable.  

A simple logistic model is defined as the logit (Y) = natural logarithm of odds ratio given as below; 

𝑌 =  ln [
𝜋(𝑥)

1−𝜋(𝑥𝜏)
] = 𝛼 + 𝛽X., 

The antilogarithm of the above gives the probability of an occurrence of outcomes of interest as 

follows. 

𝜋 =
𝑒𝛼+𝛽X

1 + 𝑒𝛼+𝛽X
 

                     𝜋  is the probability of outcome of interest 

𝛼 is the intercept 

𝛽 is regression coefficient 

The 𝑙𝑜𝑔𝑖𝑡 𝑜𝑓 𝑌 𝑎𝑛𝑑 𝑋 in the above equation is linear while the probability of 𝑌 𝑎𝑛𝑑 𝑋 is nonlinear 

hence to make the relationship of  𝑌 𝑎𝑛𝑑 𝑋 linear, the above equation is transformed by taking the 

natural logarithm. 

The sign of the regression coefficient 𝛽 determines the direction of relationship 

between 𝑙𝑜𝑔𝑖𝑡 𝑜𝑓 𝑌 𝑎𝑛𝑑 𝑋. 

The simple logistic regression above can be extended to multiple predictors variables  

𝑋1, 𝑋2… . . 𝑋𝑝 , then logistic regression of 𝑌 is as above 

𝑌 =  ln [
𝜋(𝑥)

1 − 𝜋(𝑥𝜏)
] = 𝛼 + 𝑋1𝛽1 + 𝑋2𝛽2 +⋯…+ 𝑋𝑝𝛽𝑝 

Then probability of (𝑌 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑋1⁄ = 𝑥1, 𝑋2 = 𝑥2)  =  

𝜋 =
𝑒𝛼+𝑋1𝛽1+𝑋2𝛽2+⋯…+𝑋𝑝𝛽𝑝

1 + 𝑒𝛼+𝑋1𝛽1+𝑋2𝛽2+⋯…+𝑋𝑝𝛽𝑝
 

𝛼 𝑎𝑛𝑑 𝛽 Are estimated by the Maximum Likelihood method. This method maximizes the 

likelihood of reproducing the data given the parameters estimates. 

A null hypothesis underlying this model states that all 𝛽𝑠 are all zeros. A rejection of this null 

hypothesis implies that at least one of the 𝛽𝑠 doesn’t equal zero in the population. This means 

logistic regression equation predicts the outcome better than the mean of the outcome response 

𝑌. Interpretation of results is rendered using the odds ratio for both categorical and continuous 

predictors. 
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3.3 Cumulative Logistic Regression 

This is a common method for analysis univariate ordered categorical data and it estimates the 

effects of the explanatory variables on the log odds of selecting lower response than the higher 

response categories. 

If  𝑝(𝑌 ≤ 𝑗 𝑥⁄ ) =  𝜋1(𝑥) + 𝜋2(𝑥) + ⋯…… .+𝜋𝑗(𝑥) 

Then 

       Cumulative logistic regression logit is defined as   

𝑙𝑜𝑔𝑖𝑡 𝑝(𝑌 ≤ 𝑗 𝑥⁄ ) = log (
(𝑝(𝑌 ≤ 𝑗 𝑥⁄ ))

(1 − 𝑝(𝑌 ≤ 𝑗 𝑥⁄ ))
) 

 

=log (
𝜋1(𝑥)+𝜋2(𝑥)+⋯…….+𝜋𝑗(𝑥)

𝜋𝑗+1(𝑥)+𝜋𝑗+2(𝑥)+⋯…….+𝜋𝐽(𝑥)
) 

Each cumulative logit uses all 𝑗 responses categories. A model that uses logit 𝑝(𝑌 ≤   𝑗) is alone 

an ordinary logit model for binary response in which categories  1 𝑡𝑜𝑗   form one outcome and 

category 𝑗 + 1 to  𝐽 form the second.  

A model that simultaneously uses all cumulative logits is  

𝑙𝑜𝑔𝑖𝑡 𝑝(𝑌 ≤ 𝑗 𝑥⁄ ) = 𝛼 + 𝛽𝑋, 𝑗 = 1……… . 𝐽 − 1 

Each cumulative logit has its own intercept (𝛼) and it is increasing in 𝑗  since 𝑝(𝑌 ≤ 𝑗 𝑥⁄ ) increases 

in 𝑗 for fixed 𝑥 .The logit is an increasing function of this probability. 

Cumulative model can be expressed as a latent variable of the form 

 

𝑦𝑖
∗ = ∑ 𝛽𝑘𝑋𝑖𝑘

𝐾
𝑘=1   + 휀𝑖 

And 𝑦𝑖 =

{
 
 
 
 

 
 
 
 

1               𝑖𝑓 𝑦𝑖
∗ ≤ 𝛼1 

2     𝑖𝑓 𝛼2  ≤ 𝑦𝑖
∗ ≤ 𝛼1

3     𝑖𝑓 𝛼3  ≤ 𝑦𝑖
∗ ≤ 𝛼2

.

.

.
𝐽 − 1    𝑖𝑓 𝛼𝑗−2  ≤ 𝑦𝑖

∗ ≤ 𝛼𝑗−1
𝐽     𝑖𝑓 𝛼𝑗−1  ≤ 𝑦𝑖

∗ ≤ 𝛼𝑗

 

 

If the distribution for error term 휀𝑖  is the logistic distribution then, the model is of the form 
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ln [
Pr (𝑌𝑖≤𝑏)

Pr (𝑌𝑖>𝑏)
]= 𝛼𝑏 − ∑ 𝛽𝑘𝑋𝑖𝑘

𝐾
𝑘=1  𝑏 = 𝑗…… . . 𝑗 − 1 

 𝑌𝑖 is the response of the 𝑖𝑡ℎ individual  with  𝑦𝑖  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑛𝑑  𝑦𝑖
∗ latent 

variable) 

 𝑋𝑖𝑘 - the 𝑘 − 𝑡ℎ explanatory variable for the 𝑖𝑡ℎ individual 

 𝐽 is the number of ordered categories of the independent variable. 

 𝛼𝑏
′ 𝑠   Partitions intercept (cut points) indicates the logarithm of odds of selecting lower 

rather than higher categories when all explanatory variables are set to zero. 

 𝛼 = (𝛼1………𝛼𝑗−1)is the vector of parameters in which 𝛼1 ≤ 𝛼2 ≤ ⋯ ≤ 𝛼𝑗−1 

 𝛽 = (𝛽1……𝛽𝑘) - the vector of regression coefficients for the explanatory variable? 

 𝐾 − is the number explanatory variable. 

If 𝑦∗  is a latent variable that underlies a regression model for a continuous variable and has cdf  

𝐺(𝑦∗ − 𝑛) where 𝑦∗  vary around parameter 𝑛= mean that depends on X such that𝑛(𝑥) = 𝛽(𝑥). 

Suppose that −∞ ≤ 𝛼1 ≤ 𝛼2 ≤ ⋯ ≤ 𝛼𝑗−1 ≤ ∞ are cutpoints of the continuous scale such that the 

observed response 𝑌 satisfies 𝑌 =j if 𝛼𝑗−1  ≤ 𝑌𝑖
∗ ≤ 𝛼𝑗 that is 𝑌  fall in the category 𝑗 when latent 

variable fall in the 𝑗𝑡ℎ interval of values. 

𝑝(𝑌 ≤ 𝑗 𝑥⁄ ) = 𝑝(𝑌∗ ≤ 𝑗 𝑥⁄ ) = 𝐺(𝛼𝑗 − 𝛽
,𝑋) 

Then this implies that the link is the inverse of the cdf for 𝑌∗ applies to 𝑝(𝑌 ≤ 𝑗 𝑥⁄ ). 

If 𝑦∗ =  𝛽𝑋 +  𝜖  where G is the logistic regression the inverse of G is the logit link that gives the 

proportional odds. 

The linear predictor ∑ 𝛽𝑘𝑋𝑖𝑘
𝐾
𝑘=1  is subtracted from the intercepts and the positive coefficient 

indicates an increased probability of higher response category .Cumulative logistic model assumes 

that the effect of different explanatory variables are fixed across all (𝑗 − 1) Partitions of the ordinal 

response. 

Proportional odds model has the same effect 𝛽 for each logit and for a continuous fixed predictor 

𝑥  and a fixed 𝑗 , the response curve is a logistic regression curve with binary response with 

outcomes  ≤ 𝑗 𝑎𝑛𝑑 𝑌 > 𝑗 . The response curves have the same rate of increase or decrease but are 

horizontally displaced. The same parameters B occurs for the effects of Y regardless of how cut 

points  chop up the scale  for the latent variable  and this makes possible to compare estimates 

from the studies using different response variables. 
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For 𝑗 < 𝑘  the curve for 𝑝(𝑌 ≤ 𝑘 )𝑖𝑠  a curve for 𝑝(𝑌 ≤ 𝑗) translated by 
(𝛼𝑘−𝛼𝑗)

𝛽
  units in the X 

direction then  

𝑝

(

 
 
(𝑌 ≤ 𝑘 𝑋 = 𝑥⁄ ) = 𝑝(

𝑌 ≤ 𝑗

𝑋 = 𝑥 +
(𝛼𝑘 − 𝛼𝑗)

𝛽
⁄

)

 
 

 

 

If cumulative logit model given by  

𝑙𝑜𝑔𝑖𝑡 𝑝(𝑌 ≤ 𝑗 𝑥⁄ ) = 𝛼 + 𝛽𝑋, 𝑗 = 1……… . 𝐽 − 1 

Then 

𝑙𝑜𝑔𝑖𝑡 ( 𝑝(𝑌 ≤ 𝑗 𝑥1⁄ ) −  𝑝(𝑌 ≤ 𝑗 𝑥2⁄ )) = 𝛽(𝑥1 − 𝑥2) 

 

3.4 Estimation of parameters 

A common transition matrix for credit risks assets assumed to be based on the prior information 

the behavioral score is used. 

The estimate of 𝑁𝑒
(𝑗𝑘)

 of 𝑁(𝑗𝑘)is given by 𝑁𝑒
(𝑗𝑘)

=𝑊𝑗𝑘𝑀
(𝑗𝑘) + (1 −𝑊𝑗𝑘)𝑁

(𝑗𝑘)for 𝑗, 𝑘 = 1,2……𝑛 

where  

0 ≤ 𝑗, 𝑘 ≤ 1, 𝑓𝑜𝑟 𝑗, 𝑘 = 1 ≤ ,1,2…… . . 𝑛 

𝑄(𝑗𝑘) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑖𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝑁(𝑗𝑘) 

The proposition above it states that multivariate markov chain has a stationary distribution 𝑋. Then 

vector 𝑋be taking the proportion of occurrence of each state in categorical time series of ratings. 

Denote the estimate of X by Ẋ = (Ẋ(1)Ẋ(2)………Ẋ(𝑛))𝑇 

Note from the proposition above Q matrix is given by 

 

(

 
 
 
 

𝜆11𝑃𝑒
(11)

𝜆12𝑃𝑒
(12)

……… . . 𝜆1𝑛𝑃𝑒
(1𝑛)

𝜆21𝑃𝑒
(21)

𝜆22𝑃𝑒
(22)

………𝜆2𝑛𝑃𝑒
(2𝑛)

.

.

.

𝜆𝑛1𝑃𝑒
(𝑛1)

𝜆𝑛2𝑃𝑒
𝑛2………𝜆𝑛𝑛𝑃𝑒

(𝑛𝑛)
)

 
 
 
 

�̂� ≈ �̂� 
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Let 𝜆𝑗𝑘
~1 = 𝜆𝑗𝑘𝑊𝑗𝑘 and 𝜆𝑗𝑘

~2=𝜆𝑗𝑘(1 −𝑊𝑗𝑘).it can be checked that 𝜆𝑗𝑘
~1 + 𝜆𝑗𝑘

~2=𝜆𝑗𝑘, for each j, k=1, 

2…n 

min
𝜆~1𝜆~2

𝑂𝑗 

{
 
 
 
 

 
 
 
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

(

 
 
 
 
 
 

𝑂𝑗
𝑂𝑗
𝑂𝑗
𝑂𝑗
.
.
𝑂𝑗
𝑂𝑗)

 
 
 
 
 
 

≥ �̂�(𝑗) − 𝐵𝑗

(

 
 
 
 
 
 
 

𝜆𝑗1
~1

𝜆𝑗1
~2

𝜆𝑗2
~1

𝜆𝑗2
~2

.

.
𝜆𝑗𝑛
~1

𝜆𝑗𝑛
~2
)

 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 

𝑂𝑗
𝑂𝑗
𝑂𝑗
𝑂𝑗
.
.
.
𝑂𝑗
𝑂𝑗)

 
 
 
 
 
 
 

≥ −�̂�(𝑗) + 𝐵𝑗

(

 
 
 
 
 
 
 
 

𝜆𝑗1
~1

𝜆𝑗1
~2

𝜆𝑗2
~1

𝜆𝑗2
~2

.

.

.
𝜆𝑗𝑛
~1

𝜆𝑗𝑛
~2
)

 
 
 
 
 
 
 
 

 

 

 

𝑂𝑗 ≥ 0 

∑ (𝜆𝑗𝑘
~1 + 𝜆𝑗𝑘

~2) = 1𝑛
𝑘=1 , 𝜆𝑗𝑘

~1 ≥ 0 𝑎𝑛𝑑 𝜆𝑗𝑘
~2 ≥ 0,∀𝑗, 𝑘 where 

𝐵𝑗 = 𝑄(𝑗1)�̂�(1)𝑃(𝑗1)/𝑄(𝑗2)�̂�(2)/𝑃(𝑗2)�̂�(2)/ …/𝑄(𝑗𝑛)�̂�(𝑛)/𝑃(𝑗𝑛)�̂�(𝑛) 

3.5 Credit Risk Measures 

Define 

𝐸𝑝(ℒ𝑡+1(𝒀𝒕+𝟏) ∕ 𝓕𝒕)) = ∑ ∑ 𝑬𝑷(〈𝑳𝒕+𝟏
𝒋
, 𝒆𝒊〉

𝒎
𝒋=𝟏

𝒏
𝒋=𝟏 𝑰 {𝝎 𝝐 𝛀 ∣ 𝒀𝒕+𝟏

(𝒋) (𝝎) = 𝒆𝒊} ∕ 𝓕𝒕) 

=∑∑〈𝐿𝑡+1
𝑗
, 𝑒𝑖〉𝜌({𝑌𝑡+1

(𝑗)
= 𝑒𝑖} ∕ ℱ𝑡)

𝑚

𝑖=1

𝑛

𝑗=1

 

 

𝑃𝑡+1∕𝑡
(𝑗)

∶=  𝑃𝑡+1 𝑡⁄
(𝑗1)

, 𝑃𝑡+1 𝑡⁄
(𝑗2)

, … . , 𝑃𝑡+1/𝑡
(𝑗𝑛)

 

𝑃𝑡+1∕𝑡
𝑗𝑖

∶= 𝑃 ({𝑌𝑡+1
(𝑗)

= 𝑒𝑖} ℱ𝑡⁄ ) = 𝐸𝜌(〈𝑌𝑡+1
(𝑗)
, 𝑒𝑖〉 ∕ ℱ𝑡 

= 𝐸𝑝 (〈𝑌𝑡+1
(𝑗)
, 𝑒𝑖〉) ∣𝑌𝑡=(𝑒𝑖1𝑒𝑖2 ,…..,𝑒𝑖𝑛)

 

From equation (1) below, 

𝑋𝑡+1
(𝑗)

= ∑𝜆𝑗𝑘

𝑛

𝑗=1

𝑃(𝑗𝑘)𝑋𝑡
(𝑘)
, 𝑓𝑜𝑟 𝑗 = 1,2, … . . 𝑛. 

The unknown parameters in the above equation can be estimated as above: 
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𝑋𝑡+1
(𝑗)

=∑𝜆𝑗𝑘𝑃
(𝑗𝑘)𝑋(𝑘) ≈ ∑(𝜆𝑗𝑘

~1𝑄(𝑗𝑘) + 𝜆𝑗𝑘
~2�̂�(𝑗𝑘))𝑋𝑡

(𝑘)
, 𝑓𝑜𝑟 𝑗 = 1,2… . , 𝑛.

𝑛

𝑘=1

𝑛

𝑘=1

 

Let [𝑉]𝑖 denote the ith element of the column vector  𝑉. then for each 𝑗 = 1,2, … 𝑛  𝑎𝑛𝑑 𝑖 =

1,2, … 𝑛. We have, 

𝑃𝑡+1∕𝑡
(𝑗𝑖)

= 𝐸𝜌(〈𝑌𝑡+1
(𝑗)
, 𝑒𝑖〉) ∣𝑌𝑡=(𝑒1𝑖𝑒𝑖2 ,…..𝑒𝑖𝑛)

 

=𝜌 ({𝑌𝑡+1
(𝑗)

= 𝑒𝑖}) ∣𝑌𝑡=𝑒𝑖1𝑒𝑖2 ,……,𝑒𝑖𝑛  

= [𝑋𝑡+1
(𝑗)
]
𝑖

∣𝑌𝑡=(𝑒𝑖1𝑒𝑖2……𝑒𝑖𝑛)= [𝑋𝑡+1
(𝑗)
]
𝑖

∣𝑋𝑡=(𝑒𝑖1𝑒𝑖2 ,………,𝑒𝑖𝑛) 

= [∑𝜆𝑗𝑘𝑃
(𝑗𝑘)𝑋(𝑘)

𝑛

𝑘=1

]

𝑖

∣𝑋𝑡=𝑒𝑖1 ,𝑒𝑖2 ,…..𝑒𝑖𝑛≈  [∑(𝜆𝑗𝑘
~1𝑄(𝑗𝑘) + 𝜆𝑗𝑘

~2�̂�(𝑗𝑘))𝑋𝑡
(𝑘)

𝑛

𝑘=1

]

𝑖

∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,……𝑒𝑖𝑛) 

This also implies that 

𝐸𝜌(ℒ𝑡+1(𝑌𝑡+1) ℱ𝑡 ⁄ ) =∑∑〈𝐿𝑡+1
𝑗
, 𝑒𝑖〉𝜌({𝑌𝑡+1

(𝑗)
= 𝑒𝑖} ℱ𝑡⁄ )

𝑚

𝑖=1

𝑛

𝑗=1

 

=∑∑〈𝐿𝑡+1
𝑗
, 𝑒𝑖〉𝑃𝑡+1∕𝑡

(𝑗𝑖)
≈∑∑〈𝐿𝑡+1

𝑗
, 𝑒𝑖〉

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

𝑛

𝑗=1

[∑(𝜆𝑗𝑘
~1𝑄(𝑗𝑘)  +   𝜆𝑗𝑘

~2�̂�(𝑗𝑘))𝑋𝑡
(𝑘)

𝑛

𝑘=1

]

𝑖

∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,…..𝑒𝑖𝑛) 

 

 

The joint conditional predictive distribution of 𝑌𝑡+1 given the information set ℱ𝑡 is key in 

evaluation of credit value at risk (VaR). 

𝑃𝑡+1∕𝑡
(𝑗)

∶= (𝑃𝑡+1∕𝑡
𝑗1

, 𝑃𝑡+1∕𝑡
𝑗2

, ……𝑃𝑡+1∕𝑡
𝑗𝑛

)
𝑇

≈∑(𝜆𝑗𝑘
~1𝑄(𝑗𝑘)  +  𝜆𝑗𝑘

~2�̂�(𝑗𝑘))𝑋𝑡
(𝑘)
∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,…,𝑒𝑖𝑛)

𝑛

𝑘=1

 

 

 

𝑌𝑡+1
(1)
, 𝑌𝑡+1

(2)
, ………𝑌𝑡+1

(𝑛)
 are conditionally independent given ℱ𝑡 𝑜𝑟 𝑌𝑡 thus  the joint conditional 

predictive  distribution 𝑃𝑡+1 𝑡⁄  𝑜𝑓 𝑌𝑡+1,given the information ℱ𝑡 can be completely determine by 

𝑃𝑡+1∕𝑡 ∶= (𝑃𝑡+1∕𝑡
𝑗1

, 𝑃𝑡+1∕𝑡
𝑗2

, ……𝑃𝑡+1∕𝑡
𝑗𝑛

)
𝑇

,where 𝑃𝑡+1∕𝑡 is (n 𝑥 𝑚 )- dimensional probability matrix. 

Then conditional predictive probability that the aggregate loss ℒ𝑡+1 equals ℒ𝑡+1(𝑘)̃ is given by: 
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𝜌(ℒ𝑡+1 = ℒ𝑡+1(𝑘)̃ ℱ𝑡⁄ )

= ∑ ∏𝑃
𝑡+1∕𝑡

(𝑗𝑖𝑗)
𝑛

𝑗=1(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ

≈ ∑ {∏[∑(𝜆𝑗𝑘
~1𝑄(𝑗𝑘)  +   𝜆𝑗𝑘

~2�̂�(𝑗𝑘))𝑋𝑡
(𝑘)
∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,…,𝑒𝑖𝑛)

𝑛

𝑘=1

]

𝑖𝑗𝑛

𝑗=1

}

(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ

 

The  𝑉𝑎𝑅  of the portfolio with probability level 𝛼 𝜖 (0,1)𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1 given the market 

information ℱ𝑡 is given by𝑉𝑎𝑅𝛼,𝜌(ℒ𝑡+1 ℱ𝑡⁄ ) ∶= 𝑖𝑛𝑓{𝐿 𝜖 ℛ ∕ 𝜌(ℒ𝑡+1 ≥ 𝐿 ∕ ℱ𝑡) ≤ 𝛼 } 

 

 

Let 𝐾⋆denote apositive integer in {1,2, … . . 𝑀} such that 

 

𝜌(ℒ𝑡+1 ≥ ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄⁄ ) = ∑ 𝜌(ℒ𝑡+1 = ℒ𝑡+1(𝑘)̃ ∕ ℱ𝑡) ≤ 𝛼 

𝑀

𝑘=𝐾⋆

 

𝜌( ) = ∑ 𝜌(ℒ𝑡+1 = ℒ𝑡+1(𝑘)̃ ∕ ℱ𝑡) > 𝛼 

𝑀

𝑘=𝐾⋆+1 

 

Then we have 

𝑉𝑎𝑅𝛼,𝜌(ℒ𝑡+1 ℱ𝑡⁄ ) = ℒ𝑡+1(𝐾
⋆) 

𝐸𝑆𝛼(ℒ𝑡+1 ℱ𝑡⁄ ) =
1

𝛼
𝐸𝑝(ℒ𝑡+1𝑰{ℒ𝑡+1≥ ℒ𝑡+1(𝐾

⋆)}⁄  + 𝐴(𝛼) 

Where adjustment term 𝐴(𝛼) is given by 

𝐴(𝛼):= ℒ𝑡+1(𝐾
⋆) [1 −

𝜌(ℒ𝑡+1 ≥ ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄⁄ )

𝛼
] 

 

𝐸𝑆𝛼(ℒ𝑡+1 ℱ𝑡⁄ ) =
1

𝛼
[∑ ℒ𝑡+1(𝑘)̃𝜌(ℒ𝑡+1

𝑀

𝑘=𝐾⋆

= ℒ𝑡+1(𝑘)̃ ℱ𝑡⁄ ) − ℒ𝑡+1(𝐾
⋆) ∗ 𝜌(ℒ𝑡+1 ≥ ℒ𝑡+1(𝐾

⋆) ℱ𝑡⁄⁄ ) − 𝛼 ] 
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=
1

𝛼
{∑ ℒ𝑡+1(𝑘) ( ∑ ∏𝑃

𝑡+1/𝑡

𝑗𝑖𝑗

𝑛

𝑗=1(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ

)

𝑀

𝑘=𝐾⋆

− ℒ𝑡+1(𝐾
⋆)

∗ [∑ ( ∑ ∏𝑃
𝑡+1/𝑡

𝑗𝑖𝑗

𝑛

𝑗=1(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ

)

𝑀

𝑘=𝐾⋆

− 𝛼]} 

 

≈
1

𝛼
{∑ ℒ𝑡+1(𝑘) {∑ {[∑ (𝜆𝑗𝑘

~1𝑄(𝑗𝑘)  +   𝜆𝑗𝑘
~2�̂�(𝑗𝑘))𝑋𝑡

(𝑘) ∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,…,𝑒𝑖𝑛)
𝑛
𝑘=1 ]

𝑖𝑗
}(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ
} −𝑀

𝑘=𝐾⋆

ℒ𝑡+1(𝐾
⋆) {∑ {∑ {[∑ (𝜆𝑗𝑘

~1𝑄(𝑗𝑘)  +  𝜆𝑗𝑘
~2�̂�(𝑗𝑘))𝑋𝑡

(𝑘) ∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,…,𝑒𝑖𝑛)
𝑛
𝑘=1 ]

𝑖𝑗
}(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ
} −𝑀

𝑘=𝐾⋆

𝛼}} 
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CHAPTER FOUR 

4.1 Research Design 

The research design used was the descriptive design which involves obtaining information about 

a current status of a situation to describe “what Exists” with respect to variables in a situation. 

4.2 Data Description 

A data from a loan issuing firm with 30,000 customers with their demographic features and their 

behavioral characteristics in terms of repayment status, loan limit and the amount paid in three 

months was used. A logistic regression was performed on a sample of 220 using the R program 

as follows 

Results 

The results to the logistic regression is a per the attached in the Appendix 2.a summary of is as 

shown on the table below; 

Coefficients: 

Coefficients Estimate p-value 

intercept -0.949 0.343 

sex -0.544 0.587 

education 0.586 0.558 

marriage -0.39 0.697 

Payment 

status 

-4.590 0.444 

Outstbal -1.172 0.241 

Bill 1.115 0.265 

Age 0.839 0.401 
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4.3 Data Analysis 

 On test of significance we compare the p value from Wald test and conclude that for any p value 

less than .5 as significant while for greater than .5 is removed and the test is carried out again. The 

value of gender, education status and marriage status predictors are all eliminated. 

  

All the factors that remained in the second regression are all significant and shows how each relate 

with response at hand variable. 
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4.4 Illustration. 

The marginal probability of cumulative logistic regression is given by 

𝑝(𝑦𝑖 = 𝑗) = {

𝐹(𝛿1) 𝑖𝑓 𝑗 = 1

𝐹(𝛿1) − 𝐹(𝛿1) 𝑖𝑓 𝑗 = 1 𝑛𝑎𝑑 𝑗 − 1

𝐹(𝛿1) ≤ 𝐽

 

  

 

Assuming that the estimated behavioral transition matrix for this consumers is given as below 
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And the estimated empirical transition for the matrices as above, 
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The state probability for the following states in the long run is as follows 
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0

5.0

5.0

0

)1(
X ,





















0

39.0

61.0

0

)2(
X  

         𝑋𝑡+1
(𝑗)

=∑(�̃�𝑗𝑘
1 �̂�(𝑗𝑘) + �̃�𝑗𝑘

2 𝑀(𝑗𝑘))𝑋(𝑘)
2

𝑗=1

 

       𝑋𝑡+1
(1)

=∑(�̃�1𝑘
1 �̂�(1𝑘) + �̃�1𝑘

2 𝑀(1𝑘))𝑋(𝑘)
2

𝑗=1

 

=(�̃�11
1 �̂�(11) + �̃�11

2 𝑀(11))𝑋(1) + (�̃�12
1 �̂�(12) + �̃�12

2 𝑀(12))𝑋(2) 

=          𝑋𝑡+1
(1)

= �̃�11
1 �̂�(11)𝑋(1) + �̃�11

2 𝑀(11)𝑋(1) + �̃�12
1 �̂�(12)𝑋(2) + �̃�12

2 𝑀(12)𝑋(2) 

We formulate our estimation problem as follows 

min
�̃�𝑗𝑘
1 �̃�𝑗𝑘

2
max
𝑖
[�̃�11
1 �̂�(11)𝑋(1) + �̃�11

2 𝑀(11)𝑋(1) + �̃�12
1 �̂�(12)𝑋(2) + �̃�12

2 𝑀(12)𝑋(2) − 𝑋(1)]
𝑖
 

Subject to:�̃�11
1 + �̃�11

2 + �̃�12
1 + �̃�12

2 = 1 

�̃�11
1 , �̃�11

2 , �̃�12
1 , �̃�12

2 ≥ 0 

The above equation can be reformulated as below; 

Let 𝑂𝑗 = max
𝑖

[
 
 
 
 
 
 

�̃�11
1
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5.0

.0

5.0
005.0

0875.022.00

0125.078.00
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+  �̃�11
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5.

5.0

0

382.0302.0038.0278.0
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o

+ �̃�12
1







































0

39.0

61.0

0

5.0
005.0

067.045.00

033..055.00

5.0005.0

+ �̃�12
2
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61.0

0
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014.0015.0465.0371.0
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min
�̃�𝑗𝑘
1 �̃�𝑗𝑘

2
𝑂𝑗 

Subject to: 

𝑂𝑗 ≥ (𝑋
(𝑗)) − 𝐵𝑗

(

 
 
 

�̃�11
1

�̃�11
2

�̃�12
1

�̃�12
2

)

 
 
 
, 𝑂𝑗 ≥ (−𝑋(𝑗)) + 𝐵𝑗

(

 
 
 

�̃�11
1

�̃�11
2

�̃�12
1

�̃�12
2

)

 
 
 

 

𝑂𝑗 ≥ 0 

∑(�̃�𝑗𝑘
1 + �̃�𝑗𝑘

2 )

𝑛

𝑘=1

= 1   �̃�𝑗𝑘
1 , �̃�𝑗𝑘

2 ≥ 0 ∀ 𝑗, 𝑘 

𝐵𝑗 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑄(𝑗1)�̂�(1)𝑃(𝑗1)/𝑄(𝑗2)�̂�(2)/𝑃(𝑗2)�̂�(2)/ …/𝑄(𝑗𝑛)�̂�(𝑛)/𝑃(𝑗𝑛)�̂�(𝑛) 

For the example below we have 𝐵𝑗 = 𝑄
(11)�̂�(1)𝑃(11)�̂�(1)/𝑄(12)�̂�(2)/𝑃(12)�̂�(2)/ 𝑄(12)�̂�(2)/

𝑃(12)�̂�(2) 

Given below 
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XN
)2()12(
=

























































048222.0

119444.0

364167.0

468167.0

0

39.0

61.0

0

*

382.0014.053.003.0

302.015.030.009.0

038.0465.010.028.0

278.0371.007.060.0

 

This reformulation problem is therefore as shown below,  

min
�̃�𝑗𝑘
1 �̃�𝑗𝑘

2
𝑂𝑗 

Subject to  

(𝑂1) ≥ 0 − 0. �̃�11
1 − 0.4505�̃�11

2 − 0. �̃�12
1 − 0.468167�̃�12

2  

(𝑂1) ≥
1

2
− 0.451389�̃�11

1 − 0.3825�̃�11
2 − 0.564815�̃�12

1 − 0.364167�̃�12
2  

(𝑂1) ≥
1

2
− 0.548611�̃�11

1 − 0.125�̃�11
2 − 0.435185�̃�12

1 − 0.119444�̃�12
2  

(𝑂1) ≥ 0 − 0.0�̃�11
1 − 0.042�̃�11

2 − 0.0�̃�12
1 − 0.042822�̃�12

2  

1 = �̃�11
1 + �̃�11

2 + �̃�12
1 + �̃�12

2  

�̃�11
1 , �̃�11

2 , �̃�12
1 , �̃�12

2 ≥ 0 

The solution this optimization problem can be the obtained by the excel solver as follows 

       𝑋𝑡+1
(1)

= 0.09985𝑀(11)𝑋(1) + 0.90015𝑁(12)𝑋(2) 

       𝑋𝑡+1
(2) = 𝑁(12)𝑋(2) 

Computation of Credit Value at Risk and Estimated shortfall 

The model developed above is used to generate the predictive probability distributions for 

evaluating credit risk measures. 

 Let 𝐿𝑡+1(𝑌𝑡+1
(1)
, 𝑌𝑡+1

(2)
) = 𝐿𝑡+1(𝑌𝑡+1

(1)
) + 𝐿𝑡+1( 𝑌𝑡+1

(2)
) 

For each of 𝑗 = 1,2  above, the rating class 𝑗(𝑡ℎ) and 𝑌𝑡+1
(𝑗)

 at time 𝑡 + 1 can take values in set of 

unit basis vector(𝑒1𝑒2…… 𝑒4) ∈  𝑅
4. 

Considering a unit vector [0,1]  and its uniform partition 𝑈𝑖=1
8 𝑝𝑖 where 𝑝𝑖 = (

𝑖−1

4
 
𝑖

4
)  
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Assuming that for each 𝑗 = 1,2 and 𝑖 = 1,2… .4 the loss from the 𝑗𝑡ℎ  asset 𝑌𝑡+1
(𝑗)
(𝑌𝑡+1

(𝑖) ) given 

𝑌𝑡+1
(𝑗)
= 𝑒𝑖 therefore takes the interval 𝑝𝑖 for each 𝑖 = 1,2…4  

This implies that 𝑌𝑡+1
(𝑗)

= 𝑒𝑖 the loss from the  𝑗(𝑡ℎ) asset 𝑌𝑡+1
(𝑗)
(𝑌𝑡+1

(𝑖) ) at time 𝑡 + 1 can take values 

in 𝑝1 = [0,
1

4
]. The simulated results is as below 

 

     

1 0.1235 0.2672 0.3949 0.3221 

2 0.0289 0.1857 0.3453 0.3773 

 

The ordered aggregate losses from the credit portfolio at time 𝑡 + 1 based on the the simulated 

values below are given above; 

0.753,0.851,0.942,1.003,1.043,1.435,1.236,1.347,1.548,1.679,1.777,1.803,1.900,1.998,2.038,2.5

91,2.65. 

The predictive probability from the equation derived above is as below 

.0001,0.0053,0.0032,0.300,0.035,0,0,0,0.046,0.0014,0.091,0.48,0.021,0.003,0.002,0.012 

 

Credit Risk Measures 

To evaluate the credit value at risk we choose a value 𝐾∗  such that it satisfies this two equations 

(ℒ𝑡+1 ≥ ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄⁄ ) = ∑ 𝜌(ℒ𝑡+1 = ℒ𝑡+1(𝑘)̃ ∕ ℱ𝑡) ≤ 𝛼 

𝑀

𝑘=𝐾⋆

 

𝜌(ℒ𝑡+1 ≥ ℒ𝑡+1(𝐾
⋆) + 1 ℱ𝑡⁄⁄ ) = ∑ 𝜌(ℒ𝑡+1 = ℒ𝑡+1(𝑘)̃ ∕ ℱ𝑡) > 𝛼 

𝑀

𝑘=𝐾⋆+1 

 

For our illustration the two equations are satisfied at the point 𝐾∗ = 12 and thus the  

𝑉𝑎𝑅𝛼,𝜌(ℒ𝑡+1 ℱ𝑡⁄ ) = ℒ𝑡+1(𝐾
⋆)= 1.9 

 

We can estimate the expected shortfall as follows; 

𝐸𝑆𝛼(ℒ𝑡+1 ℱ𝑡⁄ ) =
1

𝛼
𝐸𝑝(ℒ𝑡+1𝑰{ℒ𝑡+1≥ ℒ𝑡+1(𝐾

⋆)}⁄  + 𝐴(𝛼) 

Where adjustment term 𝐴(𝛼) is given by 
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𝐴(𝛼):= ℒ𝑡+1(𝐾
⋆) [1 −

𝜌(ℒ𝑡+1 ≥ ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄⁄ )

𝛼
] 

 

𝐸𝑆𝛼(ℒ𝑡+1 ℱ𝑡⁄ ) =
1

𝛼
[∑ ℒ𝑡+1(𝑘)̃𝜌(ℒ𝑡+1

𝑀

𝑘=𝐾⋆

= ℒ𝑡+1(𝑘)̃ ℱ𝑡⁄ ) − ℒ𝑡+1(𝐾
⋆) ∗ 𝜌(ℒ𝑡+1 ≥ ℒ𝑡+1(𝐾

⋆) ℱ𝑡⁄⁄ ) − 𝛼 ] 

=
1

𝛼
{∑ ℒ𝑡+1(𝑘) ( ∑ ∏𝑃

𝑡+1/𝑡

𝑗𝑖𝑗

𝑛

𝑗=1(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ

)

𝑀

𝑘=𝐾⋆

− ℒ𝑡+1(𝐾
⋆)

∗ [∑ ( ∑ ∏𝑃
𝑡+1/𝑡

𝑗𝑖𝑗

𝑛

𝑗=1(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ

)

𝑀

𝑘=𝐾⋆

− 𝛼]} 

 

≈
1

𝛼
{∑ ℒ𝑡+1(𝑘) {∑ {[∑ (𝜆𝑗𝑘

~1𝑄(𝑗𝑘)  +   𝜆𝑗𝑘
~2�̂�(𝑗𝑘))𝑋𝑡

(𝑘) ∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,…,𝑒𝑖𝑛)
𝑛
𝑘=1 ]

𝑖𝑗
}(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ
} −𝑀

𝑘=𝐾⋆

ℒ𝑡+1(𝐾
⋆) {∑ {∑ {[∑ (𝜆𝑗𝑘

~1𝑄(𝑗𝑘)  +  𝜆𝑗𝑘
~2�̂�(𝑗𝑘))𝑋𝑡

(𝑘) ∣𝑋𝑡=(𝑒𝑖1 ,𝑒𝑖2 ,…,𝑒𝑖𝑛)
𝑛
𝑘=1 ]

𝑖𝑗
}(𝑖1𝑖2,…,𝑖𝑛)𝜖𝐼𝑡+1,ǩ
} −𝑀

𝑘=𝐾⋆

𝛼}} 

Using 𝛼 = 0.05, and value𝐾∗ = 12, then  

=
1

0.05
[∑ ℒ𝑡+1(𝐾

⋆){𝑝(ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄ )}

16

𝑘=12

] = 

 

∑ ℒ𝑡+1(𝐾
⋆){𝑝(ℒ𝑡+1(𝐾

⋆) ℱ𝑡⁄ )}

16

𝑘=12

= 0.948992 

=
1

.05
∗ 0.948992 = 18.9784 

 

1

0.05
[ℒ𝑡+1(𝐾

⋆) {∑ {𝑝(ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄ )}

16

𝑘=12

− 𝛼}] 

ℒ𝑡+1(𝐾
⋆) = 1.900 
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1

0.05
[ℒ𝑡+1(𝐾

⋆) {∑ {𝑝(ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄ )}

16

𝑘=12

− 𝛼}] 

=
1

0.05
{1.900(0.518 − 0.05)} 

== 17.784 

 

 

𝐸𝑆𝛼(ℒ𝑡+1 ℱ𝑡⁄ ) = 18.9784 − 17.784 

=1.19584 

When 𝛼 = 0.01 then  

𝐾∗ = 14 

𝑉𝑎𝑅𝛼,𝜌(ℒ𝑡+1 ℱ𝑡⁄ ) = ℒ𝑡+1(𝐾
⋆)= 2.048 

 

1

0.01
[∑ ℒ𝑡+1(𝐾

⋆){𝑝(ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄ )}

16

𝑘=14

] = 3.6992 

1

0.01
[ℒ𝑡+1(𝐾

⋆) {∑ {𝑝(ℒ𝑡+1(𝐾
⋆) ℱ𝑡⁄ )}

16

𝑘=14

− 𝛼}] = 0.7000 

 

𝐸𝑆𝛼(ℒ𝑡+1 ℱ𝑡⁄ ) = 3.6992 − 0.700 

=2.9992 
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CONCLUSION 

Since both value at risk (Var) and expected shortfall (ES) increases as the probability level 

decreases we conclude that the both are consistent with their understanding. 

Cumulative link model classifies observations into categories with unknown distance between 

them. It also provides a regression framework like the linear models but it treats the outcome 

response as categorical. Cumulative logits combines many ordinary logistic regression into 

single model and it utilizes the available information. Logistic regression has been used here to 

define the prior based on the credit bureau and the behavioral score of the consumer. The 

dynamics of credit scores is described by the multivariate markov chain and its transition 

probabilities are defined by the cumulative link distribution. 

This study notes that cumulative logistic regression utilizes the available information and further 

suggest the application of risk neutral technique in the specification of the transition matrix.   
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APPENDIX 

Appendix I 

The results was as follows for the first logistic regression 

> Summary (glm1)                  Call: 

Glm (formula = default ~ sex + education + marriage + payment status + 

Bill + outstbal + age, family = binomial ("logit"), data = data excel) 

Min        1Q    Median        3Q       Max 

-2.22377 -0.68723 -0.52287 -0.05687   2.49167 

Coefficients: 

Estimate Std. Error z value   Pr (>|z|) 

(Intercept)   -1.428e+00 1.505e+00 -0.949    0.343 

Sex           -1.977e-01 3.637e-01 -0.544    0.587 

Education      1.600e-01 2.728e-01   0.586    0.558 

Marriage      -1.508e-01 3.871e-01 -0.390    0.697 

Payment status 7.666e-01 1.670e-01   4.590 4.44e-06 *** 

Bill          -6.450e-05 5.504e-05 -1.172    0.241 

Outstbal       6.333e-05 5.680e-05   1.115    0.265 

Age            2.085e-01 2.485e-01   0.839    0.401 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 240.07 on 218 degrees of freedom 

Residual deviance: 199.56 on 211 degrees of freedom 

(2 observations deleted due to missingness) 

AIC: 215.56 

Number of Fisher Scoring iterations: 6 

 

 

 

 

 

Second Logistic regression   
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Summary (glm3)                     Call: 

Glm (formula = default ~ payment status + bill + outstbal + age, 

Family = binomial ("logit"), data = data excel) 

Deviance Residuals: 

Min        1Q    Median        3Q       Max 

-2.18855 -0.67412 -0.54488 -0.05045   2.46704 

Coefficients: 

Estimate Std. Error z value Pr (>|z|) 

(Intercept)   -1.869e+00 7.116e-01 -2.626 0.00865 ** 

Payment status 7.867e-01 1.648e-01   4.774 1.81e-06 *** 

Bill          -6.929e-05 5.531e-05 -1.253 0.21034 

Outstbal       6.851e-05 5.705e-05   1.201 0.22983 

Age            2.652e-01 2.238e-01   1.185 0.23590 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 240.07 on 218 degrees of freedom 

Residual deviance: 200.41 on 214 degrees of freedom 

(2 observations deleted due to messiness) 

AIC: 210.41 

Number of Fisher Scoring iterations: 6 
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Data Description` 

 Relative Frequencies 

in percentage 

 

Variable 

 

Description 

 

Categories 

 

Score 

 

Defaulters 

 

Non 

Defaulters 

Id ID for each 

customer 

   

Default Default Status in 

the next month 

1. Default 

2. Non default 

1 

0 

  

Sex Gender 1. Male 

2. Female 

1 

0 

  

 

Education 

 

Education level 

1. Graduate school 

2. University 

3. High school 

4. Others 

1 

2 

3 

4 

  

Age Age groups 1. <=25 

2. 26<=x<=29 

3. 30<=x<=39 

4. 40<=x<=49 

5. 50<=x<=59 

6. >60 

1 

2 

3 

4 

5 

6 
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Marriage Marriage status 1. Married 

2. Single 

3. Others 

 

1 

2 

3 

  

payment 

status 

Payment status as 

at previous 

month 

1. Paid duly 

2. payment 

delay>1month 

3. payment delayed 

>2months 

4. payment 

delayed>3months 

 

1 

 

2 

 

3 

 

4 

  

Loan Bal Outstanding 

Loan Balance as 

at previous 

month 

1. <=0 

2. =0 

3. =>0 

1 

2 

3 

  

Loan 

limit 

Loan limit as at 

the previous 

month 

1. 10000<=y>=100000 

2. 100000<y<=200000 

3. 200000<=y<=350000 

4. >350000 

1 

2 

3 

4 

  


