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ABSTRACT 

This   research  work  is   intended  for  Senior  undergraduate  course  in  analysis  ,’The  3rd
  and  4th

  

year  B.ed   and  B.sc  mathematics  options’ and  first  year student  mastering  in mathematics. The  

project  covers  topics  in  calculus  ,real   analysis, measure  theory  and  applications  in  time  series.  

The  beginning chapters  lay  the  setting   to  Riemann  integration  in  contrast  with other earlier  

existing  theories   such  us  mid-ordinate rule and Trapezium  method. Riemann  defines  partition  of  

independent  ordinate  and  take variation  of   the  dependent  ordinate  then  proceed to   take  the   

minimum  and  maximum  sum  of  all  the  partitions  possible  and  the  integral  is  taken if  the  two   

Riemann  sum  are  equal. Some  examples  of   integration  are  also  provided. The  theory  of  Riemann   

stieltjes  is an extension  of    Riemann  theory that   covers ;vector-  valued  functions  and discontinuous   

functions  such  unit  step  functions  and  signum  functions. It’s  bridge the gap of  continuity  and   

discontinuity  by  use of convergence  of  series  and  also  extend the  real line  to  
n

R spaces. The   

final   and  most  notable  extension  is  the  lebesgue  integration. The  construction  of  the  lebesgue   

measure  is  done using  countable  base, whose  members  are  open  interval  then  the  idea  of   

measurable  functions  is    extensively  discussed  ,before it’s  use  in  definition  of  measurable integral  

is important  ,the  we proceed to  define  monotone  convergence theorems  and  lebesgue  dominated   

convergence  theorems. Finally  the  comparison  of   the  two  integration  theories ‘Riemann  and   

lebesgue’   is done  by  citing a number of  similarity and  loopholes  in evaluation of integral  in areas  

such as ;Bounded  and Un bounded functions ,Complex and  
PL -spaces and recovery of derivative  

functions. Finally  application  of  the  Fourier Series integrals  in  Time-Series  Analysis  is  done by  

by  smoothing time plot by regression and other methods which allow finding of auto correlation , 

wavelet and spectrum analysis.  
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       CHAPTER  ONE 

        1.0 INTRODUCTION 

        1.1   General  Introduction 

        Integration means bringing parts together ,it is the process that is inverse to differentiation. 

 

Thus the definite integration,  ”Let  f  be defined on the interval [a,b],the definite integral of f  

 Is given by ( ) lim ( ) ,

b

i
n

a

f x dx f x x
→∞

= ∆∑∫ ,provided the limits exists, where   
( )b a

x
n

−
∆ =   and i

x   

is any   value  of x  in th
i  interval. This definite integral is a number ( example of Riemann sum) 

 

The fundamental Theorem of calculus ,’let f  be continuous on the interval[a,b] and let F be  

any ant derivative of f .Then ( ) ( ) ( ) ( ) |

b

b

a

a

f x dx F b F a F x= − =∫  which shows connection of  

between ant derivatives and definite integrals.Other important theorems allied to Riemann  
 

includes   the  Archimedes ( 287 213 .B C− ) ,First Principles and mean value theorem. 

 
Riemann integral became inadequate and could not give solutions in discontinuity as well as  
 
Functions   with increasing number of limits. Thus extensions such as Riemann Stieljes and 
  
Lebesgue integration theories   allows us to integrate a much larger class of functions such as 
  
step-wise functions(discontinuous functions)and also many limits  operations can be handled  
 
with  a lot of ease. 
 
 
 
 
 
 
 
 
 
  
 

                                                                                       



 

 

 

9 

 

1.2  PROBLEM  STATEMENT 

Many  research  studies has  been  done  on  the  integration techniques   ,but very few  of  

 their  feedback  narrow   back  to  its  development  from    reasonably  well-behaved  functions  on  

 sub-intervals of real line. As well  as  developed  theories  of integrations  that  can  be  applied  to much   

large classes  of  functions   whose  domains  are more  or less  arbitrary  set ,including  subsets of  
2

R  

This   research  aim  to  put  across  different  ways  of  approximating  areas  of the  regions, the   

Riemann  theory  and  extensions   by  Stieltjes  and  Lebesgue  and  also  its  applications  in  time 

series  analysis 

1.3   OBJECTIVES 

The  overall  objectives  is  to  survey  the  formulation  (or  derivation)  of  both  Riemann  integral 

and  Lebesgue  integral  and  make  a  brief  comparison  between  theories. 

1.4 Specific   Objectives  

1 .Investigate   the   fundamental  concepts  of Riemann  and  Riemann-Stieltjes  theory  of  integration. 

2.  Construction  of  the  lebesgue    measure  and  integration  and some  of  the  main  theorems   of     the   

theory. 

3.Make  a  brief comparison    stating   where  possible   advantages  of  Lebesgue    integral  theory  over   

the   Riemann  integral theory. 

4.Exhibit   examples  to  show  applications  in  Time  Series  Analysis. 

1.5  SIGNIFICANCE   OF   STUDY 

Lebesgue   integration  have  wide  range  of  applications  in statistics of  expectations,  Solutions to 

time series analysis   and research  methods. Furthermore   integration  and  differentiation is very vital 

 in applied   and   Engineering  mathematics. It   also occupy  a   central  place  in analysis , in the study of  

( L
2
-Spaces  and  L

p
-spaces). 
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 CHAPTER 2     

 2.0  LITERATURE   REVIEW 

 2.1  Motivation 

Three Cambridge University Dons of mid 20th−  Century in their three books, 

 ‘Cambridge Mathematics; Part I ,Part II ,and Part III ,classified the subject into  

      (i)Mathematics for pre-university/undergraduate mathematics 

      (ii)Applied mathematics of specialized courses and 

     (iii)Mathematics Analysis   

  Riemann  and  Lebesgue Theories  Of Integration  are  some of earlier stage  of  analysis  and  extending  the   

 study  of real line to 
n

R  spaces just  make it much involved .Furthermore application of  orthogonal integral to 

time series analysis  is crucial in Biostatistics  ,geophysics  and  financial  fields 

2.2  Background  Information. 

The concepts of integration dates backs to ( (287 213 . )B C− )  where  Archimedes  and his  

contemporaries would apply the first principles to find area of planes figures even before the method 

 of differentiation was discovered. Otherwise, the concepts of integration as a technique that both acts  

as a an inverse to the operation of differentiation and also compute area under curves ,goes back  to the  

origin of calculus and the work of Isaac Newton (1643 1727)−  and  Leibnitz  (1646 1716)−  

It   was  Leibnitz   who  introduced  the  ∫ …dx   notation. The first rigorous attempt to 

 understand  integration  as  a limiting operation within the spirit of analysis was due to 

 Bernard Riemann (1826 1866).− The   approach  of  Riemann that is usually taught was however  

developed by Jean-Gaston  Dar boux (1842 1917)− .at  the  time it was developed this  theory seemed 

 to be all that was needed but as the  19th
 century drew 

 
closer, some problem appeared.

 

(i)One of the main tasks of integration is to recover a function   f   from  it’s   derivative  'f . 

 but  some  functions were discovered for which  'f  was bounded  but  not  Riemann  integrable. 
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 (ii)Suppose ( )
n

f  is a sequence of   functions   converging  point wise  to  f . The Riemann integral                      

could  not  be  used to find conditions for which      ( ) lim ( )n
n

f x dx f x dx
→∞

=∫ ∫  

 (iii)Riemann integration was limited to computing integrals over  
2

R   with   respect   to Lebesgue  measure,  

although it is not yet apparent ,the  emerging theory of probability would require the calculation of  

expectations   of random variables ; ( ) ( ) ( )x E X x w dp w
Ω

= ∫ .The  Lebesgue’s  technique allows us to   

investigate   ( ) ( )
s

f x dm x∫
 

where     ;f S R→   is a ‘suitable’  measurable function defined on a measure  

 space ( , , )S M∑ ,
 If  we  take  M  to  be  the  Lebesgue  measure  on  ( , ( ))R B R .   we  recover   

 the familiar integral    ( )
R

f x dx∫  but we  will now be able  to integrate many  more functions 

(at least in principles)than Riemann and  Darboux. If we take  X  to be a random    variable   on  a 

probability  space, we get it’s expectation  ( )E x . 

2.3  COMPARISON 

Many  authors  such  as   have  compared  the  two  theories  Riemann and  Libesgue  inform  

of  integral   theorem, but  much of comparisons tools  will depend  on the  calculus 

 reader/student  in  identifying the key areas, applications  and  the successes or  failure of  each  

method. This  article  cite five such areas  namely; Integration  of  discontinuous  functions, Relation    

of differentiation  and  integration, complex  functions  and 
2L space− s.  

   2.4  APPLICATION 

There  are  wide  range  of  stationary  time series  models  methods  for  estimation  of  autocorrelation 

and  spectrum  as  well  as  methods  for  multivariate  stationary  series, and those  that  forecasting   

future  values  .  Authors  who  have  written  materials  in this  field  includes  

Priestly .M,’ Spectral   Analysis  and Time  Series’.   Hannan. E.J,’ Time  Series  Analysis.’  etc..                                                                            
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 CHAPTER  THREE 

 RIEMANN INTEGRATION  

3.1.0  (Partition) 

3.1.1 Definition; Let [a, b] be a compact interval. Then the set of points { }1, ,..........o np x x x=  

satisfying  the inequality 0 1 2..........
n

a x x x x b= < < < =   is called a partition of [ , ]a b
 

 

 

                         

0 1 1.............

| | | |
a x n nx x x b= − =

 

3.1.2  Consequences 

                    (a) 1k k k
x x x −∆ = −    such  that

1

n

k

k

x b a
=

∆ = −∑  

                     (b)  collection of all possible partition on [ , ]a b  is denoted by ( , ) [ , ]Q a b P Q a b⇒ ∈  

                                        I .e   P is a partition of [ , ]a b  

3.2.0    Bounded  Variation  (  Bounded  Variation ) 

3.2.1   Definition  ; Let f be a function on [ , ]a b with 
1

( ) ( ) ( )
k k k

f x f x f x −∆ = − , if there exist a 

number   M such that M>0  and  1| ( ) ( ) |k kf x f x M−− ≤∑              [ , ]p Q a b∀ ∈             . 

Then the function f   is said to be bounded variation on [ , ]a b  and is denoted  by  . [ , ]f BV a b∈ . 

                    Y  

( )
k

f xλ =  

 

1
( )

k
f xµ −=      

                                |
a

                              

 

               |
b

              
X  
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3.2.2   Theorem
 

If  f  is monotonic on [ , ]a b  then . [ , ]f BV a b∈  

Proof 

A monotonic   f  is either an increasing  ( )↑  or decreasing   ( )↓  function on  

an interval [ , ]a b . (i)When  f  is  increasing ( )↑  on [ , ]a b  

Then for every partition of [ , ]a b   we have 1
( ) ( ) 0

k k
f f x f x −∆ = − ≥  

Hence 
1 1

1 1 1

( ) ( ) ( ) ( )
k

n n n

k k k

i i i

f x f x f x f x
− −

= = =

− = −∑ ∑ ∑  

                                                         ( ) ( )f b f a= −  

Putting  ( ) ( )f b f a M− = , hence for all possible  partitions , 

     . [ , ]f BV a b∈   since  
1

| |
n

k

k

fx M
=

∆ ≤∑  

     (ii)If  f  is   decreasing   ( )↓   on  [ , ]a b   

        Then   for   every  partition  of  [ , ]a b  

         We have 
1

( ) ( ) ( ) 0
k k k

f x f x f x−∆ = − ≥  

Hence 1 1

1 1 1

| ( ) ( ) | ( ) ( )
n n n

k k k k

i i i

f x f x f x f x− −
= = =

− = −∑ ∑ ∑  

                                                     ( ) ( )f b f a= −        

Putting ( ) ( )f b f a M− =  implies that 
1

| |
n

k

k

fx M
=

∆ ≤∑                                                                                               

Hence for all partitions on [ , ], . [ , ]a b f BV a b∈  
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3.2.3   Def ( ε δ− ,definition of  continuity) 

A   function ( )f x  is  continuous   at a point  a  if for every number 0ε >  their exist 0δ >  

Such that  | | | ( ) ( ) |x a f x f aδ ε− < ⇒ − <  

    ( )f b        _                                                      ( )f x                                         

                      

    ( )f a       _   

                                    |
a

  δ        |
x

                                 
X

 

3.2.4  Example 

The function   
2 5

( )
4

x
f x

x

−
=

−
   is  continuous   at  5x =      since 

2

5

5
lim

4x

x

x→

−
−

 has a value(exist). 

On the contrary  ( )f x  is not continuous  at  4x = , because  its limit has no value. 

Proof 

                     f(x)                                                                     f(x) 

                                       ε  

                        f(a)                              δ  

                                               a                                x 

          In  this  case  5a = ,  
2 5

( )
4

x
f x

x

−
=

−
  

          choose   any   0ε >   and  fix  it   such   that  | ( ) ( ) |f x f a ε− <  

          i.e   
2 5

| 20 |
4

x

x
ε

−
− <

−
    or

2 5 20 80
| |

4

x x

x
ε

− − +
<

−  

                                                     =
2 20 75

| |
4

x x

x
ε

− +
<

−
= 

( 5)( 15)
|

4

x x

x
ε

− −
<

−
 



 

 

 

15 

 

                                                 =  
15

| ( 5) || |
4

x
x

x
ε

−
− <

−
   

                                                =  
4

| 5 | | |
15

x
x

x
ε

−
− <

−
                         

1

10
(for  x  close  to    5) 

                        i.e     | 5 |
10

x
ε

δ− < =    Thus  0δ >    and | 5 |x δ− <    

                                         whenever  | 5 |x δ− < | ( ) (5) |f x f ε⇒ − <     

 

 

 

 

 

 

3.2,5 .  Theorem; Let f  be continuous in [ , ]a b , if the derivative 'f of the function f  exist  

and  is  bounded on [a, b]   such  that   for ( , ),x a b∀ ∈ then f  is of bounded variation.  

Recall mean value theorem   
1

1

( ) ( )
'( ) k k

k

k k

f x f x
f t

x x

−

−

−
=

− and  1
( ) ( ) ( )

k k k
f x f x f x −∆ = −

 

 by mean value theorem   1
( ) '( )( )

k k k k
f x f x x x −∆ = −  '( )

k k
f t x= ∆   where   1k k k

x t x− ≤ ≤  

And hence  | | | '( ) |
k k

f f t x∆ = ∆∑ ∑ ( )A b a≤ − Putting  ( )A b a M− = , 

we  have  | |
k

f M∆ ≤∑   i. e  f   is  a  bounded  variation.  
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 3.3.0 Total Variation 

3.3.1  Def ;Let . [ , ]f BV a b∈  and let 1| ( ) ( ) |k kSp f x f x −= −∑  corresponding to the partition 

{ }0 1 2, , .......... np x x x x= ( )
k

f x
   

 

                                              1)( kf x −  

                                                                      
0 1...... ...

| . . |
k na x x x b x= =  

Let [ , ]Q a b  be the set of all partition of   [ , ]a b , the  number                    

{ }( , ) ; ( , )
f p

V a b Sup s p Q a b= ∈
                                                                 

             { 1| ( ) ( ) |p k kSup s f x f x −= = −∑  |   ( , )}P Q a b∈  is called the total variation of  f  on [ , ]a b . 

3.3.2   Theorem 

Let . ( , )f BV a b∈  and let a c b< <  then . [ , ]f BV a c∈  and . [ , ]f BV c b∈   furthermore 

[ , ] [ , ] [ , ]f f fV a b V a c V c b= +  

Proof 

(I)Showing ( , ) ( , ) ( , )f f fV a c V c b V a b+ ≤  

Let 1
p  and  2

p   be any arbitrary partitions of [ , ]a c  and [ , ]c b  respectively. Then 
20 1p p p= ∪   is a 

partition of [ , ]a b .Let  1| ( ) ( ) |i k kSp f x f x −= −∑ , corresponds to the partitions 
i

p (for arbitrary 

appropriate interval)  then 1 2 0 1( , )
f

p p Sp V a b Sp+ = ≤ ⇒∑ ∑   and 2Sp  are bounded above by 

( , )fV a b ,Which implies that 1 1| ( ) ( ) | ( , )
k k f

Sp f x f x V a b−= − ≤∑  and 

2 1| ( ) ( ) | ( , )
k k f

Sp f x f x V a b−= − ≤∑  hence  f  is of bounded on [ , ]a c  and [ , ]c b   and from above 

 we have ( , ) ( , ) ( , )
f f f

V a c V c b V a b+ ≤
.
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(II)To show ( , ) ( , ) ( , )
f f f

V a b V a c V c b≤ +
 

 Let  0 0 1, ,..........
n

p x x x=   be partition on [ , ]a b   and let }{'P P c= ∪   obtained by adjoining  

a point  c in  0p .If 1( , )
k k

c x x+∈   then 1 1| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |
k k k k

f x x f c f x f c f x− −− ≤ − + +    so  

that  0 'Sp Sp≤   .The points P   which belongs to  [ , ]a c  and the points of  P  which belongs to [ , ]c b   

determines the partitions 1p   and 2p hence 0 1 2'Sp Sp Sp Sp≤ = +  I .e 0 1 2Sp Sp Sp≤ +  

                                                                          ( , ) ( , )Vf a c Vf c b≤ + ( , ) ( , ) ( , )f f fV a b V a c V c b⇒ = +
 

3.3.3        Theorem 

Let   [ , ]f BV a b∈   and  consider   the  function  F   defined 

  in  [a, b]   by  
( , ); ...

( )
0; .....

f
v a x if a x b

f x
if x a

< <
= 

=        then F(↑) and  F-f(↑)

 

Proof 

For  a x y b< < ≤   we  have  ( , ) ( , ) ( , )f f fV a b V a x V x y= + ……….(i) 

so  that  ( ) ( ) ( , )
f

F y F x V x y= +  ( , ) ( ) ( )
f

V x y F y F x⇒ = −  

                                                             ( ) ( ) 0F y F x⇒ − ≥                                                                                                           

 ( ) ( )F x F y⇒ ≤  but  x y≤  F⇒ ↑  i. e  non  decreasing. 

Also for   a x y b≤ ≤ ≤ we have   ( ) ( )F f y F f x− − − ( ) ( ) [ ( ) ( )]F y f y F x f x= − − −            

                                                                                                             {[ ( ) ( )] [ ( ) ( )]F y F x f y f x= − − −  

                                                                                                             ( , ) ( , ) [ ( ) ( )]f fV a y V a x f y f x= − − −  

                                                                                              ( , ) [ ( ) ( )] 0fV x y f y f x= − − ≥  

                             ( ) ( ) 0F f y F f x⇒ − − − =  

                            ( ) ( )F f x F f y⇒ − ≤ −    but  x y≤ I .e   F f− ↑   hence non-decreasing 
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3.3.4  Theorem 

A   real  valued  function f  defined on [a, b]   is of  bounded variation on  [a, b] 

if   and  only if   f  can be expressed as a difference  of  two  non-decreasing 

functions  1f   and  2f      i. e 1 2( ) ( ) ( )f x f x f x= − , 

   with  1f   and  2f  non-decreasing  on  [a ,b]. 

Proof 

Let   . [ , ]f BV a b∈   then   ( )f F F f= − − , 

Let   F   be defined as  
( , );

( )
0;........

f
V a x a x b

F x
x a

= < <
= 

=
     

Where   both  F  and  F f−   have  been  shown  to be 

   non-decreasing  (by previous theorem) 

Putting  1F f=    and  1 2F f f− =   then  f  can  be  expressed  as a  

 difference  of   two non-decreasing  functions. 

Conversely 

Let   1 2f f f= −   when  1f  and 2f   are non-decreasing   functions  on [a, b] 

1f   and  2f   are  monotonic   on  [a,  b] 

Thus  1f   and  2f   are  of  bounded  variation  on [a, b]. 

 Hence  the  difference  1 2f f−   is  of  bounded  variation  on  [a, b] 

I .e  1 2f f f= −   is  of  bounded  variation. 
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3.4.0  RIEMANN  INTEGRATION 

3.4.1. Definition; Let f  be continuous and bounded  on  [ , ]a b , divide  [ , ]a b  into n sub-divisions by points 

0 1, ,.......
n

x x x  

 
Y

 

         

                                                                                              k
m       k

M  

  

                                      0a x=   1x       2....x             1k
x −    

k
b x=

        
X  

Thus partition }{ 0 1, ,........, nP x x x=   such  that    0 1 ..........
n

a x x x b= < < < =   . 

Let the largest sub-interval have value  1k k k
x x x −∆ = −  

Let   { 1sup ( ) sup ( ); ( , )}k k kM f x f x x x x−= = ∈  for 1k k
x x x− < <                                          

}{ 1inf( ) inf ( ); ( , )k k km x f x x x x−= = ∈  , for 1k k
x x x− < <   and for each partition  

form the sum  ( ) 1 1 0 2 2 1 1( ) ( )............. ( )p n n nS M x x M x x M x x −= − + − −  = 

1

n

k k

k

M x
=

∆∑                                     

Similarly    ( ) 1 1 0 2 2 1 1( ) ( ) ...... ( )p n n ns m x x m x x m x x −= − + − + −   

1

n

k k

k

m x
=

= ∆∑                                               

 
p

S and 
( )p

s  are called the upper and lower sum respectively ,by varying the partition we obtain 

 set  of  ( )pS   and ( )ps ,Let ( )inf . .pU S g l b= =   of the values of ( )pS ∀   possible partition. Let 

( ) . .pL Sups l u b= =  of all values of  ( )ps ∀   possible partition. These values which always exist  

are  called upper and lower Riemann integrals of f  over [a ,b] denoted by      ( )

b

a

U f x dx= ∫     and    

L = ( )

b

a

f x dx∫   If L U=  i. e  If the lower   and   upper   integrals are equal   then f is  said  be 
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Riemann-integrable over [ , ]a b  and the common integral is denoted by  ( )

b

a

I f x dx= ∫   

(i)if U L≠ , f is not  integrable  over the interval [ , ]a b  

(ii) the expression ( )I f x dx= ∫   is called  the  Riemann integral.                                                                        

3.4.2  Theorem 

Let  f  be continuous  on  [ , ]a b   and  a c b< <   then   ( ) ( ) ( )

b c b

a a c

f x dx f x dx f x dx= +∫ ∫ ∫  

Proof 

Let 1p  and 2p  be partition of [ , ]a c  and [ , ]c b  respectively and 1 2P p p= ∪  

i.e P   consists of at least one of the sets 1p   and 2p  ,where by  ( )L SupS p=  

clearly  1 2( ) ( ) ( )S P S p S p= +   moreover ( ) ( )

b

a

S P L f x dx≤ ≤ ∫  , then given any 1p   of  [ , ]a b    

and  2p  of [ , ]a b        1 2( ) ( ) ( )

b

a

S p S p f x dx⇒ + ≤ ∫  1 2( ) ( ) ( )...........( )

b

a

S p f x dx S p i⇒ ≤ −∫  

For any part 2p  of  ( , )c b   the right hand side of  ( )i  forms an upper bound of 1( )S p , 

1 2( ) ( ) ( )

b

a

SupS p f x dx S p⇒ ≤ −∫  

    
1 2( ) ( ) ( ) ( )

c b

a a

SupS p f x dx f x dx S p⇒ ≤ ≤ −∫ ∫     i. e  
2( ) ( ) ( )

c b

a a

f x dx f x dx S p≤ −∫ ∫                                                                                

  2( ) ( ) ( ) .....( )

b c

a a

S p f x dx f x dx ii⇒ ≤ −∫ ∫ ∀  partition 2p  in [ , ]a b  , the right hand side of  ( )ii                            

forms an upper bound           1( ) ( ) ( )

b c

a a

SupS p f x dx f x dx⇒ ≤ −∫ ∫
 

2( ) ( ) ( ) ( )

b b c

c a a

SupS p f x dx f x dx f x dx⇒ ≤ ≤ −∫ ∫ ∫ Thus ( ) ( ) ( )

c b b

a c a

f x dx f x dx f x dx+ ≤∫ ∫ ∫  ……….*
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To  show  the  reverse  inequality    

Let  P be any  partition  of  [a, b]  and  Q  be  the  partition  obtained  from  P 

by  adjoining   a  point  C   in  [a, b]                                           
P

 

                                                                                      a             c                b  

                                                                                            1p               2p           then   ( ) ( )s p s Q≤  

Let  1p  be  the  part  of  [a,b]  consisting   those  points   of  Q   which  lie  on  [a, c]  and   2p   be  part 

of  [a, b]   consisting  of  those  points  of  Q which  lie  on  [c, b]  then  

    1 2( ) ( ) ( ) ( )s p s Q s p s p≤ = +     ( ) ( )

c b

a c

f x dx f x dx≤ +∫ ∫  

                                                     i.e ( ) ( ) ( )

c b

a c

s p f x dx f x dx≤ +∫ ∫   ,∀ possible  partition  P  on  [a, b] 

( ) ( ) ( )

c b

a c

SupS p f x dx f x dx≤ +∫ ∫        ( ) ( ) ( ) ( )

b c b

a a c

SupS p f x dx f x dx f x dx≤ ≤ +∫ ∫ ∫Q   

then  ( ) ( ) ( ) ......**

b c b

a a c

f x dx f x dx f x dx≤ +∫ ∫ ∫  

By  *  and  **     equality  is  established  i. e  ( ) ( ) ( )

b c b

a a c

f x dx f x dx f x dx= +∫ ∫ ∫
 

3.4.3  Theorem 

Let f   be  continuous   on [ , ]a b   with max ( )M f x=  and min ( )m f x=  on [ , ]a b  

Then ( ) ( ) ( )m b a f x dx M b a− ≤ ≤ −∫   

Proof 

Let  ( )p k kS M x= ∆∑ , ( )p k ks m x= ∆∑   since 
k K

m m M M≤ ≤ ≤  ,taking summation  
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from   1k = to n     k k k K k k
m x m x M x M x∆ ≤ ∆ ≤ ∆ ≤ ∆∑ ∑ ∑ ∑    .For all possible partitions over 

[ , ]a b  thus  we  have  ( ) ( ) ( ) ( )( ) inf ( )k p p k p pm x s S M x m b a Sups S M b a∆ ≤ ≤ ≤ ∆ ⇒ − ≤ ≤ ≤ −∑ ∑  

But  ( ) ( )( ) inf

b

p p

a

Sups f x dx S≤ ≤∫   hence ( ) ( ) ( )

b

a

m b a f x dx M b a− ≤ ≤ −∫  

3.4.4   Properties of Riemann integral 

1.If  ( )f x c=   where  c   is  constant  then ( ) ( )

b

a

f x dx c b a= −∫ . 

2.Let f  be  continuous  then { ( ) } ( ) ( )

b b

a a

f x c f x dx c b a+ = + −∫ ∫  

 3.If  f  is continuous and integrable on  [ , ]a b ,then there exist a number  c  between   a   and  b    

such that  ( ) ( ) ( )

b

a

f x dx b a f c= −∫ . 

3.4.5 Example 1        Find the integral   of  

4

2

( 1)x dx+∫    We need to decide on some partitions that  

would involve smaller and smaller segments, hoping that the corresponding upper and lower sums will  

get into N  equal segments.        
2

; 2 (4 2) 2 , 0,1,......N k

k k
P x k N

N N
= + − = + =

             

 

We determine the sup rema  and inf ima  for the sum, but this should be easy (see diag) 

                                                                       2
N

 

 
 

          Y                                                             k
m          k

M  

                                                                                  

 

                                                          2      1k
x −   k

x       4                X  
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1

1 1

2 2 2
( , ) ( )( ) (( ) 1).

N N

N k k k

k k

k
U f p f x x x

N n
−

= =

+
= − = +∑ ∑

 
 

                                             
2 2

1 1

6 4 6 4 ( 1)
1 . .

2

N N

k k

N N
k N

N N N N= =

+
= + = +∑ ∑  

                                                                      
2 1

6
N

N

+
= +     

                  
1 1

1 1

2( 1) 2
( , ) ( )( ) ((2 1).

N N

N k k k

K k

k
L f p f x x x

N N
− −

= =

−
= − = + +∑ ∑

 

                                                                       =
2

1 1 1

6 4 4
1 1

N N N

K K K

K
N N N= = =

− +∑ ∑ ∑
 

 

                                                                       
2 2

6 4 4 ( 1)
. . .

2

N N
N N

N N N

+
= − +

 
 

                                                                        =
4 1

6 2( )
N

N N

+
− +

 

 

When we send  N  to infinity ,the sums approximate the area as well 

 

2 1
{ ( , ) lim( ( , ) lim(6 ) 8N

n n

N
Inf U f p U f p

N→∞ →∞

+
≤ = + =

                     
4 1

{ ( , )} lim( ( , )) lim(6 2 ) 8
Nn n

N
Sup U f p L f p

N N→∞ →∞

+
≥ = − + =

 

Thus    

 

8 { ( , )} inf{ ( , )} 8Sup U f p U f p≤ = ≤
        

                   

{ ( , )} inf{ ( , )} 8Sup U f p U f p= =
 

 

Hence the function   is Riemann  integrable  on   and 

4

2

( 1) 8x dx+ =∫
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3.4.6  Example 2

 

Show that a constant  function k  is integrable and ( )

b

a

kdx k b a= −∫  

For any partition p  of the interval [ , ]a b  ,  

we have 
1 2

( , ) ........
n

L p f k x k x k x= ∆ + ∆ + + ∆  

                                 1 2
( ........ ) ( )

n
k x x x k b a= ∆ + ∆ + + ∆ = −  

                     sup ( , ) ( )

b

a

kdx L p f k b a

−

= = −∫  

                     inf ( , ) ( )

b

a

kdx U p f k b a

−

= = −∫  

   Thus ( )

b b

a a

kdx kdx k b a

−

−

= = −∫ ∫
 

 3.4.7   Example3                                                                                                                                                                            

Show that the function f  defined by                               

 

                       ( )f x =   
0; .. .. ..

( )
1; .. .. ..

when x is rational
f x

when x is irrational


= 


 is  not  integrable on any interval 

Let us consider a partition  p   of an interval  [a,b]  

1 1 1 2

1

( , ) 1 1 ....... 1
n

n

i

U p f M x x x x b a
=

= ∆ = ∆ + ∆ + + ∆ = −∑
 

                             inf ( , )

b

a

fdx U p f b a

−

= = −∫
 

1 2
( , ) sup{0 0 ........ 0 } 0

n
L p f x x x= ∆ + ∆ + + ∆ =

 
                              sup ( , )

b

a

fdx L p f

−

=∫
        

  

Thus  
b b

a a

fdx fdx

−

−

≠∫ ∫  , hence, the function f  is not  integrable. 
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3.5.0. Some Calculus Theorems Allied to  Riemann  Integral 

3.5.1 Definition 

Let f   be differentiable and defined on  ( , )a b   and let f   be continuous  on [ , ]a b  , 

If  f   satisfies '( ) ( ) ( , )F x f x x a b= ∀ ∈  ,  then F  is called the anti derivative or primitive of f  

3.5.2 Example 

For 
2( )F x x=    then  anti derivative of  ( )f x  is defined by 

3

( )
3

x
F x c= +  

3.5.3 Theorem 

Let F   be anti derivative for f   and G   be  defined on [ , ]a b   .Then G   is a primitive for f   

 on  [ , ]a b   if and only  if  for some constants c , ( ) ( )G x F x c= +  

Proof 

 ( )F x c+  is a primitive of  f  on [ , ]a b   ,suppose G   is a primitive  of  f  on [ , ]a b   

 then  F G−   is continuous  and differentiable on [ , ]a b  

                             [ ( ) ( )] '( ) '( )D F x G x F x G x⇒ − = −  

                                                                       '( ) '( )f x f x= −  

                                                                        0=  

                              ( ) ( )F x G x c⇒ − =    

                             
( ) ( )G x F x c⇒ = +  
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3.5.4   Theorem(Fundamental theorem of integral calculus) 

Any function f   which is  continuous  on  [ , ]a b   has a primitive on [ , ]a b  . 

If  G  is any primitive of  f Then  ( ) ( ) ( )

b

a

f x dx G b G a= −∫    [ ( )]b

aG t=  

Proof 

Let F  be defined on [ , ]a b   by  ( ) ( )

b

a

F x f t dt= ∫      ∀     [ , ]x a b∈ , 

                                             then ( ) ( ) ( )

b

a

f t dt F b F a= −∫  

                                                                        {( ( ) ) ( ( ) )}G b c G a c= + − +  

                                                                          = ( ) ( )G b G a−  [ ( )]b

aG t=
     

 

3.5.5    Theorem
 

Let f   and g   be continuous   on [ , ]a b   and  , Rλ µ ∈  , 

 Then    ( ( ) ( )) ( ) ( )

b b b

a a a

f x g x dx f x dx g x dxλ µ λ µ+ = +∫ ∫ ∫  

Proof 

Let F   and G   be primitive of f   and  g  on  [ , ]a b  , 

then  ,h F Gλ µ= +  is a primitive of     f gλ µ+   

 and  { ( ) ( )} [ ( ) ( )]

b

b

a

a

f t g t dt F t G tλ µ λ µ+ = +∫    by . . .F T I C   

                                                    [ ( )] [ ( )]
b b

a a
F t G tλ µ= +    

                                                     ( ) ( )

b b

a a

f t dt g t dtλ µ= +∫ ∫             
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 3.5.6    Theorem(Integration by parts) 

Suppose f  and g  are  continuous  on [ , ]a b  and have primitives F   and G  respectively on [ , ]a b  

Then ( ) ( ) [ ( ) ( )] ( )

b b

b

a

a a

f t G t dt F t G t F t dt= −∫ ∫  where ' ( )F f x=  and ' ( )G g x=  

Proof 

( )FG G F F G Gf Fg∆ = ∆ + ∆ = +          

FG⇒  is a primitive of  fG Fg+   on [ , ]a b ,by previous theorem (fundamental theorem of  integral  

calculus)    ( ( ) ( ) ( ) ( ) [ ( ) ( )]

b

b

a

a

f t G t F t g t dt F t G t⇒ + =∫  

Distributing integration signs, we have  

                               ( ) ( ) ( ) ( ) [ ( ). ( )]

b b

b

a

a a

f t G t dt F t g t dt F t G t+ =∫ ∫  

                                   ( ) ( ) [ ( ) ( )] ( ) ( )

b b

b

a

a a

f t G t dt F t G t F t g t dt⇒ = −∫ ∫
 

, hence integration by parts. 

 

3.5.7    Theorem (Cauchy  Criterion) 

Let ( )
n

f   be   a  sequence  of  functions  defined on  S R⊆  

then  their exist  a  function  f ,such  that  n
f  converges  uniformly  on  S  

  iff  the  following  is  satisfied, 

      0ε∀ >     N∃   such  that   | ( ) ( ) |
n

f x f x ε− <     x s∀ ∈   and  ,m n N>   
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3.5.8   Theorem (Cauchy –schwarz inequality) 

Suppose f  and g   are  continuous  on  [ , ]a b   

  then  2 2 2{ ( ) ( ) } { ( )} . { ( )}

b b b

a a a

f t g t dt f t dt g t dt≤∫ ∫ ∫  

Proof,     

 For  any  [ , ]x a b∈ ,   2 2 2 20 { ( ) ( )} { ( )} 2 ( ). ( ) { ( )}

b b b b

a a a a

xf t g t dt x f t dt x f t g t dt g t dt≤ + = + +∫ ∫ ∫ ∫  

                                                                           2
Ax Bx C≡ + +  

i.e  2 2 0Ax Bx C+ + =  , such a quadratic equation cannot have two different  

    Roots implies  2 4 0b ac⇒ − ≤    i. e    2 4b ac≤  Substituting ( )2 2
2 4B AC B AC≤ ⇒ ≤  

    
2 2 2

{ ( ) ( ) } { ( )} . { ( )}

b b b

a a a

f t g t dt f t dt g t dt⇒ ≤∫ ∫ ∫
 

3.5.9   Theorem ( . .M V T  of Integral Calculus)

 

Let f   be  continuous  on [ , ]a b   ,then ∃    ( , )a bξ ∈   for which ( ) ( ) ( )

b

a

f x dx b a f ξ= −∫  

                                         where  
( ) ( )

( )
F b F a

f
b a

ξ
−

=
−

 

Proof   

Since f  is continuous  on [ , ]a b   then f   is Riemann  integrable  [ ( ) ( ) ( )]

b

a

m b a f x dx M b a− ≤ ≤ −∫  

 thus  ∃   µ   between min   and max   such that  ( ) ( )

b

a

f t dt b aµ= −∫   , but  f   is continuous  

 and  takes all the values between min   and  max ⇒ ∃    ( , )a bξ ∈    such that  ( )f ξ µ=   

        i.e  ( ) ( )( )

b

a

f t dt f b aξ= −∫
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RIEMANN-STIELJES  INTEGRAL 

4.3.0  Review;    

In Riemann integral 1
{ ( ); }

i i i
M Sup f x x x x−= ≤ ≤   and 1

inf{ ( ); }
i i i

m f x x x x−= ≤ ≤  , 1i i i
x x x −∆ = −  

The upper and lower sums are defined by  

1

( , )
n

i i

i

U M x u p f
=

= ∆ ≡∑   and  
1

( , )
n

i i

i

L m x L p f
=

= ∆ ≡∑  

And further  ( ) inf inf ( , )

b

a

f x p fµ µ

−

= =∫  …(i)    ( ) sup sup ( , )

b

a

f x dx L L p f

−

= =∫     ……(ii) 

Remark.   Inf  and Sup taken over all possible partition P of  [a, b]. If (i) and (ii) are equal 

i.e    ( , ) ( , )u p f L p f=   then f   is said to be Riemann –Integrable  on [a ,b]. 

4.3.1   Def (R.S integrals) 

Let α  be a real value on which  f  is  monotonically  ( )↑  on  [ , ]a b  ,since  ( )aα   and   ( )bα    

are finite .It follows that α   is bounded on   [ , ]a b ,corresponding to each partition  P  of  [ , ]a b  

We  write   1
( ) ( )

i i
x xα α α −∆ = −  .Clearly ,  0α∆ ≥ ,for any real valued function f which is 

 bounded on [ , ]a b ,      We have 
1

( , , )
n

i i

i

u p f Mα α
=

= ∆∑  ,          
1

( , , )
n

i i

i

L p f mα α
=

= ∆∑  

We define  ( ) ( ) ( ) ( , , )

b b

a a

f x d x fd Inf p fα α α

− −

= =∫ ∫   and  ( ) ( ) ( ) ( , , )

b b

a a

f x d x fd x SupL p fα α α

− −

= =∫ ∫  

If  
b b

a a a

fd fd fdα α α

−

−

= =∫ ∫ ∫   ……………..(1) 

Equation (1) is called the Riemann -Stieltjes  integral  of  f   with  respect  to  α over  [ , ]a b  . 

In  this  case  f   is said to be  .R S   integral and is denoted by   ( )f R α∈ . 
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4.3.2 Remark 

If   ( )x xα =    then the  .R S   integral reduces to Riemann integral 

4.3.3  Theorem 

If  *P   is a refinement of   P  ,then   ( , , ) ( *, , )..( )L p f L P f iα α≤  *( , , ) ( , , )U p f U p fα α≤ …(ii) 

Proof 

To prove  ( )i   ,suppose *P contains only one point more than P and let  *x   be the extra point   

Such that *

1i ix x x− < <    where       1i
x −   and   i

x
 
 are  consecutive   of   P . 

We put 1 1
{ ( ); *}

i
W Inf f x x x x−= < <     and  2

{ ( ); * }
i

W Inf f x x x x= < <    

Let  1
{ ( ); }

i i i
M Inf f x x x x−= < <    ,then  clearly 1 i

w m≥  and 2 i
w m≥     

 And so ( *, , ) ( , , )L p f x L p f x−   1 1 2 1
[ ( *) ( )] [ ( ) ( *)] [ ( ) ( )]

i i i i i
w x x w x x m x xα α α α α α− −= − + − − −  

                                                                 1 1 2
( )[ ( *) ( )] ( )[ ( ) ( *)] 0

i i i i
w m x x w m x xα α α α−= − − + − − ≥  

                                       *( , , ) ( , , ) 0L p f L p fα α⇒ − ≥    ( , , ) ( *, , )L p f L p fα α⇒ ≤                                                            

4.3.4    Corollary 

( ) ( ) ( ) ( )

b b

a a

f x d x f x d xα α

−

−

=∫ ∫  

Proof 

Let  *P   be  the common refinement of two partition 1
p   and  2

p    1 2
*P p p⇒ = ∪

  
by   theorem 

 above  *

1 2( , , ) ( , , ) ( *, , ) ( , , )L p f L p f U p f U p fα α α α≤ ≤ ≤ Hence  1 2
( , , ) ( , , )L p f U p fα α≤    

and  if  2
p   is fixed and  Sup  taken over all possible partition 1

p  

2( , , ) ( ) ( , , )

b

a

SupL p f f x dx U p fα α

−

= ≤∫
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Thus  ( ) ( )

b

a

f x d xα

−

∫  is a lower bound, taking   inf imum  over all possible partition  2
p ,                                         

we    obtain    2( ) ( ) ( , , )

b

a

f x d x InfU p fα α≤∫
 

       
2( , , )

b b

a a

fd InfU p f fdα α α

−

−

≤ =∫ ∫ .        

b b

a a

fd fdα α

−

−

⇒ ≤∫ ∫  

4.3.5   Example 

Let ( )x xα =   and define f   on [0,1]   as 
1; ..

( )
0; ...

if rational
f x

if irrational


= 


 

                                                                                                                                                                ( )f b  

Show that 

1 1

0 0

( ) ( ) ( ) ( )f x d x f x d xα α≤∫ ∫
                     

( )f a

                                 mi      Mi

 

Solutions                                                                                                          0                        1              

For  every partitions of  [0,1] , { ( ); [0,1]} 1
i

M Sup f x x= ∈ =  and  { ( ); [0,1]} 0
i

m Inf f x x= ∈ =  

Since every sub-interval  1
[ , ]

i i
x x−  contains both rational and irrational and this holds to  

each partitions hence P∀      ( , , ) ( , ) 1u p f u p fα = = ,      ( , , ) ( , ) 0L p f L p fα = =  

Thus  
1 1

0 0

( ) ( ) ( ) ( )f x d x f x d xα α≤∫ ∫  

Thus the  
1

0

( ) sup ( , ) 0f x dx L p f= =∫   and  
1

0

( ) ( , ) 1f x dx Inf p f= =∫  .Then we compare the two  

Since   0≠1  i.e.   0<1  and  then  

1 1

0 0

( ) ( ) ( ) ( )f x d x f x d xα α≤∫ ∫  

                                                                                          

 

 



 

 

 

32 

 

4.3.6   Theorem 

( )f R α∈  on  [ , ]a b  if  for every  0ε >   ∋ partition P  s. t   ( , , ) ( , , )U p f L p fα α ε− < ……….*                        

(a criterion to show integral) 

Proof 

For every point P   we have  ( , , ) ( , , )

b b

a a

L p f fd fd U p fα α α α

−

−

≤ ≤ ≤∫ ∫                            

                                                 Thus  0

b b

a a

fd fdα α ε

−

−

≤ − <∫ ∫  

Since ε   is arbitrary chosen     

b b

a a

fd fd fdα α α

−

−

= =∫ ∫ ∫   i.e  f     is R S−   integral and ( )f R α∈  

Conversely 

Suppose ( )f R α∈  and let 0ε >  , then there are partitions  
1

p  and 
2

p  of  [ , ]a b  

 Such  that ,  2( , , )
2

b

a

u p f fd
ε

α α− <∫   ……(i)    and  1( , , )
2

b

a

fd L p f
ε

α α− <∫  ….(ii) 

Let P   be common refinements of 1
p   and 2

p  

 Then 
2( , , ) ( , , )

2

b

a

U p f U p f fd
ε

α α α≤ + ∫  

Hence  we  have   
2 1,( , , ) ( , , ) ( , )

2
u p f u p f L p f

ε
α α α ε≤ < +  

                           1
( , , ) ( , , )u p f L p fα ε α⇒ < +   

          i.e.  
1

( , , ) ( , , )u p f L p fα α ε− <     where ( )f R α∈  
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4.3.7    Properties of  R.S integration 

(a)If  1
( )f R α∈  ,   2

( )f R α∈   on [ , ]a b  then  1 2
( )f f R α± ∈   

               by linearity  . ( )c f R α∈    c R∀ ∈ . 

(b)If  1 2
( ) ( )

o
f x f x≤  then  1 2

b b

a a

f d f dα α≤∫ ∫ . 

(d)If  ( )f R α∈   on [ , ]a b   ,   ( )f x M≤ ,  then | | [ ( ) ( )]

b

a

fd M b aα α α≤ −∫  

(e)Linearity, If  
1

( )f R α∈   and     
2

( )f R α∈    

           Then    1 2 1 2( )

b b b

a a a

f fd fdα α α α+ = +∫ ∫ ∫      And   ( )

b

a

f R c c fdα α∈ = ∫  

Proof  (e) 

If   1 2
f f f= +    and   P is any  partition  of  [ , ]a b  

We have that  1, 2( , ) ( , , ) ( , , )L p f L p f L p fα α α+ ≤ 1, 2( , , ) ( , ) ( , , ).U p f U p f U p fα α α≤ ≤ +  

If  1
( )f R α∈  and  2

( )f R α∈ ,  let  0ε >  be given. There  are  partitions  ( 1,2)jp j =  

such  that    ( , , ) ( , , )j j j jU p f L p fα α ε− < .These inequalities persists if  1
p   and  2

p   are  

replaced  by  their common refinement p .Thus  ( , , ) ( , , ) 2U p f L p fα α ε− <  which proves 

that  ( )f R α∈  and for this p we have    ( , , )j jU p f f dα α ε< +∫      ( 1,2)j =

1 2( , , ) 2fd U p f f d f dα α α α ε⇒ ≤ < + +∫ ∫ ∫ ,Since  ε was  arbitrary ,we have that  

1 2fd f d f dα α α≤ +∫ ∫ ∫ …………(a)  If  we  replace  1
f   and  2

f  in (a) 

 by  
1

f−  and  
2

f− ,the inequality is reversed  and equality is  proved. 
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4.4.1   Definition;   Unit Step function 

A  function α  defined on [ , ]a b  is said to be a step function if  ∃  a partition  0 1
{ , ,............, }

n
P x x x=  

With  0 1
............

n
a x x x b= < < < =    such  that  α  is constants on each interval. 

The number   ( ) ( )k kx xα α+ −−   is called the jump at  
k

x  for  1 k h< <  

             ( )xα      3
α  

                             2
α  

                             1
α       

                                   
0x a=

  
1

x
   

2
......x

        
nx b=

 

4.4.2    Example 

0; 0
( )

1; 0

x
I x

x

≤
= 

>
       and  in general   

0;
( )

1;

x
I x

x

ε
ε

ε

≤
− = 

>
   the partition provides link  

             between R.S integral  and finite series 

4.4.3   Theorem 

Let  α   be 
n

f  on [ , ]a b  with ( ) ( )k k kx xα α α+ −= −   as in above. 

Let  f   be defined such that both f   and α  are not discontinued   from   

        Right  to  left     at   each   
k

x       then      
b

a

fdα∫   exists   

                       and   
1

( ) ( ) ( )

b n

k

ka

f x d x f xα
=

=∑∫   . 
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4.4.4    Example (step function) 

Let  [ ]x   be the largest integer less than or equal  to  x , 

referred to as greatest integer function,[x]≤x≤[x]+1  e.g. [π],  [e]=2 

 

                  Y  

 

  

                             1
|         2

|          3
|        4

|         5
|

            
X  

Note   [ ]α   is continuous from the right with   1
k

α = .    Thus If f  is continuous on [2,5]  and  

( ) [ ]x xα =       Then 
5 5

0 0

( ) ( ) ( ) [ ]f x d x f x d xα =∫ ∫   from theorem above  

                                                                
5

1

( ) 1 2 3 4 5 15
i

f i
=

= = + + + + =∑  

Now suppose f  was x2   

                                                
2 2

5 5
2 2 2 2 2

10

[ ] 1 2 3 4 5
i

x d iα
=

= = + + + +∑∫  

                                                                                               1 4 9 16 25 55= + + + + =  

4.4.5   Example 2 

  
5 5 5

2 2 2

0 0 0

( ( [ ]) [ ]x d x x x dx x d x+ = +∫ ∫ ∫  

                              

2 5
5 2

0

0

|
3 i

x
i

=

= +∑    

                               
125 2

1 4 9 16 25 96
3 3

= + + + + + =
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4.5.0   Theorem (change of variable) 

Suppose  µ  is a strictly increasing continuous function that maps an interval [ , ]A B   onto [ , ]a b  

Suppose α   is monotonically increasing on  [ , ]a b   and   ( )f R α∈  on   [ , ]a b , 

Define β  and g on  [ , ]A B  by            ( ) ( ( ))y yβ α µ=                   ( ) ( ( ))g y f yµ=  ………………..(I) 

          then  ( )g R β∈   and     

B b

A a

gd fdβ α=∫ ∫  ………….(II) 

Proof 

To each partition { }0 1, ,.........., nP x x x=  of  [ , ]a b   corresponds a partition 0 1
{ , ,........ }

n
Q y y y=   of  

[ , ]A B     such that  ( )
i i

x yϕ=   and all  partitions are    obtained in this way .Since the values taken by f  

  on 
1

[ , ]
i i

x x−   are  exactly  the same as those as those taken by g   on  
1

[ , ]
i i

y y−  ,we see that          

( , , ) ( , , )U Q g U p fβ α= ,          ( , , ) ( , , )L Q g L P fβ α=               …….(III).Since ( ),f R α∈   

 can be chosen so that both ( , , )U p f α   and    ( , , )L p f α   are close to   fdα∫ .and   

( , , ) ( , , )U p f L p fα α ε− < , then ( )g R β∈   and  thus   
B b

A a

gd fdβ α=∫ ∫ ,if ( )x xα =  and 

β ϕ=  and  if  ' Rϕ ∈  on  [ , ]A B   then ( ) ( ( ) '( )

b B

a A

f x dx f y y dyϕ ϕ=∫ ∫
                 

 

 

 4.5.1   Example                                                                                        

 

Evaluate   2sin cosx xdx∫  

solution 

Let  sinu x= ,  then cos ; cos
du

x du xdx
dx

= =  

Thus 
2 2sin cosx xdx u dµ=∫ ∫  

3

3

u
c= +

3sin

3

x
c= +
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4.6.0  Integration Of Vector-Valued Functions
 

Let  1, 2,......... kf f f  be real functions  on [a,  b] and 1
( ,........, )

k
f f f=  be the corresponding 

mapping of [a, b]  into k
R .If α increases monotonically  on [a, b],to say ( )f R α∈ ,for  1,......,j k= . 

in  this case  1( ,........ )

b b b

k

a a a

fd f d f dα α α=∫ ∫ ∫ i. e  fdα∫   is  the point   

in  k
R  whose  

thj  co-ordinates  is jf dα∫  

4.6.1  Theorem  

If  f  maps [ , ]a b   into k
R  and ( )f R α∈  for  some monotonically  increasing α  on [ , ]a b  

Then  | | ( )f R α∈   and  | | | | ....( )

b b

a a

fd f d aα α≤∫ ∫  

Proof 

If  1
..........

k
f f   are  components  of  f ,then 

1

2 2 2
1| | ( ....... )nf f f= + + ,each  of 2

( )
i

f R α∈  

and hence does their sum. Since square root function is continuous on [0,M] for  

every real M,   | | ( )f R α∈ , 

To prove (a)Let  1
( ,...... )

n
y y y=   where  j jy f dα= ∫   then  we have that   y fdα= ∫  

             

2 2| | j jy y y f dα⇒ = =∑ ∑ ∫ ( )j jy f= ∑∫ ,    by the  Schwarz  inequality  

( ) | || ( ) |j jy f t y f t≤∑          ( )a t b≤ ≤      hence   
2| | | | | | ....( )y y f d bα≤ ∫  

If   0y =   a  is trivial, If  0y ≠ , division  of  (b)  by | |y   gives  (a). 
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4.6.2  Example 

If   
2 2(3 6 ) 14 20A x y i yzj xz k= + − +  

Evaluate   .
c

A dr∫   from (0,0,0)  to  (1,1,1)  along the following  paths C 

where   x t=     , 2y t=       , 3
z t=  

Solution 

Points (0,0,0)  and (1,1,1) corresponds to  0t =  and  1t =  respectively 

   dx dt=       , 2dy dt=      , 23dz t dt=  

1

2 2
. (3 6 )

t

c t o

A dr t t dt

=

=

= +∫ ∫  2 314( )( )2t t dt− 3 2 220( )( ) 3t t t dt+  

           

1

2 2 9

0

9 28 60t dt t dt t dt= − +∫  

           

1

2 6 9

0

(9 28 60 )t t t dt= − +∫  3 7 10 1

03 4 6 | 5t t t= − + =  

4.6.3  Example2 

Compute the  length of the arc  ( cos ) ( sin )t t tx e t i e t j e k= + +      t−∞ < < ∞  

   
0 0

| | | cos sin ) ( sin cos ) |

t t

t t t t tdx
S dt e t e t i e t e t j e k dt

dt
= = − + + +∫ ∫  

      
1

2 2 2 2

0

[ ( 2cos sin ) (2cos sin 1) ]

t

t t t
e t t e t t e dt= − + + +∫  

     
0

3 3( 1)

t

t te dt e= = −∫
 

 

 

  

 



 

 

 

39 

 

4.7.0  Rectifiable Curves 

4.7.1  Definition ;For each curve γ   in  k
R   there is associated a subset of  k

R  , 

 i.e. the range of γ  ,but  different curves may have the same range.  

We associate to each partition 
0 1

{ , ,........., }
n

P x x x= of [ , ]a b  and to each   Curve  γ  on [ , ]a b   

 the number  1

1

( , ) | ( ) ( ) |
n

i i

i

P x xγ γ γ −
=

∧ = −∑
  

the  th
i   term in this  sum is the distance (in k

R ) 

 between the points 
1

( )
i

xγ −   and ( ).
i

xγ  

Hence  ( , )p y∧   is the length of  a polygonal path with vertices at  0 1
( ), ( ),......... ( )

n
x x xγ γ γ    

in this order. As our partitions becomes finer and finer this polygon approaches the range of  γ  more  

  and more closely and is reasonable to define the length of γ as   ( ) sup ( , )pγ γ∧ = ∧ , 

      where the supre mum is taken over all partitions of   [ , ]a b . 

If  ( )γ∧ < ∞  ,we  say that  γ   is rectifiable. 

In certain cases, ( )γ∧  is given by a Riemann integral, this can be proved for  

       curves  γ   whose derivatives   'γ  is continuous. 

4.7.2  Theorem 

If  'γ  is continuous on [ , ]a b  , then γ   is rectifiable and  ( ) | '( ) |

b

a

t dtγ γ∧ = ∫  

Proof 

(i)If   1i i
a x x b−≤ ≤ ≤      then   

1

1 1

1| ( ) ( ) | | '( ) | | '( ) |
i

i i

xx

i i

x x

x x t dt t dtγ γ γ γ
− −

−− = ≤∫ ∫  

 Hence ( , ) | '( ) |

b

a

p t dtγ γ∧ ≤ ∫    for every partition P  of  [ , ]a b thus ( ) | '( ) |

b

a

t dtγ γ∧ ≤ ∫  ….(i) 
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(ii)To prove the reverse inequality let  0ε >   be given, Since 'γ   is uniformly   continuous   on [ , ]a b   , 

 there    exist   0δ >    such  that | '( ) ( ) |s tγ γ ε− <   if    | |s t δ− < .   

Let 0 1
{ , ,.......... }

n
P x x x=   be  a  partition  of  [ , ]a b  ,with  i

x δ∆ <   for all  i , 

 If  1i i
x t x− ≤ ≤    it now follows that | '( ) | | '( )

i
t xγ γ ε≤ +   

 hence  

1

| '( ) | | '( ) |
i

i

x

i i i

x

t dt x x xγ γ ε
−

≤ ∆ + ∆∫  

                                    

1

| [ '( ) '( ) '( )] |
i

i

x

i i

x

t x t dt xγ γ γ ε
−

= + − + ∆∫  

                                    

1 1

| '( ) | | [ '( ) '( )] |
i i

i i

x x

i i

x x

t dt x t dt xγ γ γ ε
− −

≤ + − + ∆∫ ∫  

                                   1
| ( ) ( ) | 2

i i i
x x xγ γ ε−≤ − + ∆     

If we add these inequalities, we obtained  

                      | '( ) | ( , ) 2 ( )

b

a

t dt p y b aγ ε≤ ∧ + −∫  

                                                ( ) 2 ( )b aγ ε≤ ∧ + −  and  since ε    was arbitrary 

Thus | '( ) | ( ).............( )

b

a

t dt iiγ γ≤ ∧∫ From (i)  and  (ii) we have ( ) | '( ) |

b

a

t dtγ γ∧ = ∫  

4.7.3  Example 1 

If ( ),x f t a t b= ≤ ≤  is a rectifiable arc, show that given an arbitrary 0δ >   and   0ε > , 

there  exist a subdivision 1
.....

o n
a t t t b= < < =  with polygonal approximations P  such 

that   (i) 1
1,.....,

i i
t t n−− =            (ii) | ( ) |s s p ε− <        ,where  s   and ( )s P   are the lengths 

of   ( )x f t=    and P  respectively. 

Since  s  is the supremum of all possible ( ),s P there exists subdivisions ' ' '

1 ....
o n

a t t t b= < < < =  
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with polygonal  approximations  'P  such that ( ')s P s ε> − .For  otherwise, ( )s P s ε≤ −   for  all 

( ),s P  so that s ε−  is  an upper  bound of the ( )s P  less than the supre mum s ,not  impossible. 

Now the above subdivision does not satisfy (i),a finer subdivision     1
....

o n
a t t t b= < < < =   

satisfying 1
( )

i i
t t δ−− <   can be obtained  by introducing additional points.  But  the  new  

polygonal  arc  'P  obtained this way satisfies ( ) ( ')s P s P ε≤ ≤   and  therefore  also | ( ) |s s P ε− <   

4.7.4  Example 2 

Show that a regular  arc  ( ),x f t=  ,a t b≤ ≤  is rectifiable . 

 let   1
....

o n
a t t t b= < < < = be arbitrary  subdivision,  

Then  1( ) | |i i

i

s P x x −= −∑ 1| ( ) ( ) |i i

i

f t f t −= −∑
 

 
1 1 2 2 1 3 1

| ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) |
n n n n n n

n

f t f t i f t f t j f t t k− − −= − + − + −∑
 

1 1 1 2 2 1 3 3 1[| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |]n n n n n n

n

f t f t f t f t f t f t− − −≤ − + − + −∑
 

  

' ' ' ' ''

1 1 2 1 3 1[| ( ) | ( ) | ( ( ) | ( ) | ( ) | ( )]n n n n n n i i i

n

f t t f t t f t tθ θ θ− − −≤ − + − + −∑
 

where  we  used  the  mean  value theorem  for  the  ( )
i

f t ,and  since  
'( )

i
f t  are  

  continuous on  closed interval a t b≤ ≤ ,they are bounded  on a t b≤ ≤ , say by 
n

M .Hence  

1 2 3 1 1 2 3( ) ( ) ( ) ( )( )n n

n

s P M M M t t M M M b a−≤ + + − ≤ + + −∑  

Thus the ( )s P  are all bounded by 
1 2 3

( )( )M M M b a+ + −  and so the  arc  is rectifiable 
n

M . 
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 CHAPTER   FIVE 

 The LEBESGUE  INTEGRATION 

5.0  Introduction  

5.1  Interval of a real line 

Let I  be an interval   of  real   line    and  points  ( , )a b ,  where   a b<   i. e  I   is   

 either   of the following types  ( , ),[ , ], ( , ],[ , )a b a b a b a b  .Then the real number  b a−   is called  

 the length  of either of these   interval, we  denote it by   ( )Iλ ,   In this case  I   is bounded   

and  is of  the  form   [ , ]a b  .And  the length  taken  as  +∞. 

Remark 

If   a b=  , then the length    ( ) 0Iλ =  , thus  the void  set  ∅    has a length  i. e  ( ) 0µ ∅ = . 

5.2 .0  The  Lebesgue  Measure 

5.2.1  Theorem 

Consider  R   with the metric (Euclidean)  then  any open subsets  E   of the real line can be 

 expressed   as  the union of   at most countable family of mutually  disjoint  sub-interval of  R . 

Proof 

Let  A   be any subsets of the real line 'R  then   there   is  at  least  one open subset of   R   which 

Contains   A  (  for  instance   R   contains  A ),Let this open subset  be expressed as a union of  

at  most countable  family of open sub-interval  of   R .  Hence   any   subset  A   of   R   can be covered    

by  at most    countable family of open intervals denoted by  ( )S A   I. e the class of all 

 such   at most  countable    covers  of  A .  

 If  γ   is  at  most  countable  collection  of open sub-interval’s of  R   and  thus   
1( )

n
Iγ ∞= , 

  where   each  ( )
n

I   is an open interval  and  
1

( ), ( )n

n

I S A S Aγ
∞

=

= ∀ ∈U
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5.2.2   The  Outer  Lebesgue  Measure

 
Let  γ  represent any at most countable collection of open  sub-intervals  of   'R  

We put  { ; }
n

I n Nγ = ∈  ,each of  n
I   is an open sub-Interval of  'R  .such 

that the non-negative extended real number   *( ) ( )Iλ γ λ=∑    i. e  *( )λ γ  -represent’s   sum  

of  the length’s of all sub-interval in the collection  γ  . Let E   be any subsets of  R   and  let  γ  

 be  any  at most  countable collection of open sub-interval’s that covers  E   which implies that   

( ( ))S Eγ ∈  . The  extended real number  inf{ *( ); ( ( ))}S Eλ γ γ ∈   is called the outer  lebesgue 

 measure of  E  denoted by  *( )m E  . 

Equivalently 

Let  ( ( ))S Eγ ∈  ,at most countable sub-interval that covers  E  i. e  1( )
n n

Iγ ∞
==  , then  the extended 

 real number  *( ) ( )nIλ γ λ=∑   i. e  ( )S Eγ ∈   is a set of real numbers  
1 2

*( ), *( )....λ γ λ γ
 

Then we proceed to take the infimum,  inf{ *( ); ( )}S Eλ γ γ ∈  

and     *( ) inf{ *( ); ( )}m E S Eλ γ γ= ∈    , 

 Hence   for  each  subset E of  R’  there corresponds  a unique  non-negative  extended   

number  *( ) 0m E ≥   and  it’s  infimum  is  such that  
**; ( ')
T

m P R R→   

extended real number  is called the outer Lebesgue measure. 

5.2.3  Remark  ;  Lebesgue   measure  is  complete .For  if   EϵM     and  M(E)=0  and A⊆E 

 then   AϵM   and  M*(A)=0 

Proof ;    Let  M*(E)=0,  and  A⊆E, then  by motone  property   M*(A) ≤M*(E)=0 

*( ) 0... .. *( )o M A thus M A⇒ ≤ ≤                                                                                        
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5.2.4   Theorem 

Let  *m  denote the outer lebesgue measure on  'R  

Then     (i) *( ) 0m φ =  

              (ii) *( ) 0m E ≥   ,whenever E F∈ (non-negative) 

             (iii) If  , ( )A B P R∈   and A B⊂  then  *( ) *( )m A m B≤  

                      {monotone property of M*} 

Proof  

(i)We choose  γ φ=     ⇒  ( ( ))Sγ φ∈   then  *( ) 0λ γ =     ( ( ))Sγ φ∀ ∈  

   Now   *( ) inf{ *( ); ( )} 0m Sφ λ γ φ= =  

 

 (ii)Let  'x R∈   consider  { }E x=   then   { , }
2 2

x xε ε
γ

− +
= covers  { }x   also 

*( ) ( ) ( )
2 2

n

x x
I

ε ε
λ γ λ

+ −
= = −∑   ,The measure  *({ }) *( )m x λ γ ε≤ =          

  Implying the measure of    infimum  is positive  i.e. 0 *({ } *( )m x λ γ ε≤ ≤ =   ,    

     and  *({ }) 0m x =   if γ = ∅  

 

 (iii)Since  A B⊆   , ( ) ( )S A S B⊆  

      Indeed if   implying  ( )S Bγ ∈   , 

                       Then { *( ), ( )} { *( ); ( )}S A S Bλ γ γ λ γ γ∈ ⊆ ∈   

                         and  hence  *( ) *( )m A m B≤    
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5.2.5    Theorem 

*M   is  count ably  sub-additive i. e if  
1( )

n n
E

∞
−

 is a sequence of subsets of 'R  

  then  
1

*( ) *( ).........( )
n

n

m m E i
∞

=

≤∑U
 

Proof   ;Suppose  *( )
on

m E = +∞   for  some  
o

n N∈ ,then the right hand side  of (i) 

diverges, however  since  
1

on n

n

E E
∞

=

⊆U introducing  the  measure    
1

*( ) *( )
on n

n

m E m E
∞

=

≤ U   
   

thus   *( )nm E+∞ ≤ U  hence(i) holds  true  for  *( )
onm E = +∞    

Assume  *( )nm E ≤ ∞  by definition of  *m   it follows  that  for each  

0ε >    ( )n S Eγ∃ ∈  such that  *( ) *( ) , 1,...
2

n n n
m E n

ε
λ γ ≤ + =   

Let  

1

n

n

γ γ
∞

=

=U  then  γ  is  atmost countable  collection  of  open   interval   which covers   

1

n

n

E
∞

=
U   

1

( )
n

n

S Eγ
∞

=

∈ U The  measure  of  the  union   

1 1

*( ) *( )
n n

n n

m E λ γ
∞ ∞

= =

≤U U *( )λ γ=  

                                                

1

*( )
n

m E
∞

=
U

1

*( )
n

n

λ γ
∞

=

≤∑
1

( *( ) )
2

n n
n

m E
ε∞

=

< +∑
1

*( )
n

n

m E ε
∞

=

= +∑  

                                              
11

*( ) *( )
n n

nn

m E m E
∞ ∞

==

≤∑U
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5.2.6   Thm; If  E ∉Μ  then there is a subset  A  of  E with finite positive measure  (0 *( ) )m A< < ∞

 Proof 

Since  the measure E ∉Μ   by definition 'x R∃ ⊆   such that *( ) *( ) *( )cm x m x E m x E< ∩ + ∩  

Suppose  *( )m x E∩ = +∞ ,Since  x x E⊇ ∩  by  monotone property *( ) *( )m x m x E≥ ∩ = +∞  

Thus  *( )m x = +∞   and hence *( )m x E∩ < ∞  

Next  suppose  *( ) 0m x E∩ =   Thus *( ) *( )cm x m x E< ∩ , 

This is a contradiction  since  
c

x x E⊇ ∩    hence  *( ) *( )
c

m x m x E⊇ ∩  *( ) 0m x E⇒ ∩ >   

 i.e  0 *( )m x E< ∩ < ∞ Putting  x E A∩ =  we have 0 *( )m A< < ∞  where A E⊂  

5.2.7  Theorem 

If   ,A B∈Μ ,then so is A B∪ ,Any  finite union is measurable or Μ  is closed under the union operation 

Proof 

Let  A∈Μ  by definition ,it follows that any 'X R⊆  i. e *( ) *( ) *( )....( )cm x m x A m x A i= ∩ + ∩  

Similarly  B Y R∈Μ⇒ ∃ ⊆  such that *( ) *( ) *( )....( )cm Y m Y B m Y B ii= ∩ + ∩  

In particular 
c

Y X A= ∩ ……. ( )iii ,using ( )iii and ( )ii  we  have 

that  *( )cm x A∩ = *( )cm x A B∩ ∩ *( ).....( )c cm x A B iv+ ∩ ∩  

Substituting  (iv)   and  (i) gives  *( ) *( )m x m x A= ∩ *( )cm x A B+ ∩ ∩ + *( )c cm x A B∩ ∩  

or  *( ) *( ( ))m x m x A B= ∩ ∪ ( )cA B+ ∪  

Hence  by  finite sub-additivity  of  m*,  *( ( )m x A B∩ ∪ *( ) *( ( ))c cm x A m x A B≤ ∩ + ∩ ∩  

*( ) *( ( ))m x m x A B⇒ ≥ ∩ ∪ *( ( ) )cm x A B+ ∩ ∩ x R⇒ ∃ ⊆   such that 

*( ) *( ( )) *( ( ) )cm x m x A B m x A B≥ ∩ ∪ + ∩ ∪ and from definition we have A B∪ ∈ Μ  
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5.2.8  Theorem 

If   A   and B  are both  L-measurable  then A B∩ ∈ Μ  

Proof 

,A B ∈Μ
 
 from  definition, ,c cA B⇒ ∈Μ ∈Μ   

  
c c

A B⇒ ∪ ∈Μ  

                       ( )cA B⇒ ∩ ∈Μ    

 A B⇒ ∩ ∈ Μ  

5.2.9  Definition (Ω − Algebra  or  Ω − Field) 

Let   X be a non-void  set  and   ℱ be a class of  subsets of  X  satisfying 

the  following  (1)   φ ∈ℱ 

                        (2)   If  E ∈ℱ  then  
c

E ∈ℱ 

                   (3)  If 1( )n nE ∞
−   is a sequence   of members of  ℱ then 

1

n

n

E
∞

=

∈U
1

n

n

E
∞

=

∈U ℱ 

Then  ℱ is called a Ω − algebra  of  subsets of  X  

5.2.10  Theorem (Disjoint   Lemma) 

Let  X  be a non-void  set  and Ω  be an  algebra  of  X  

If  
1( )n nE ∞

=   is any sequence of  sets  in Ω  such that  

                    (i) n n
D E⊆  

                    (ii) m n
D D∩ = ∅  whenever  m n≠   where 1( )n nD ∞

=   is pair wise disjoint 

                    (iii)
1 1

n n

n n

D E
∞ ∞

= =

=U U    ,Then x  belongs to at least one of the '
n

E s  
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Proof 

(i) n n
D E⊆    n N∀ ∈  since  n

E ∈Ω  is  an  algebra     

    and  '
n

D s   are obtained  from  '
n

E s  .Using  operations  of union  of  sets 

      on  finite number of  sets  i. e D E=    and ( 1 2
..... )

n
E E E∪ ∪   1n >  and  clearly  that  n n

D E⊆  

(ii) m n
D D∩ = ∅ ,  whenever  1( )n nD ∞

=   is pair wise  disjoint 

             

                                                                                                             1D  

                                                       

                                                            n
D                                                          2

D  

 

                                
3

D
                                        2D  

From construction of   '
n

D s   it  follows  that  m n
D D∩ = ∅   for  n m≠  

(iii) 
1 1

n n

n n

D E
∞ ∞

= =

=U U   

                                                 1
E                              1

D            

 

                               2
E                                                  1D             From  construction of  '

n
D s   it  follows   

                                                                   2D               that  n m
D D∩ = ∅   for  n m≠  thus   n n

D E⊆  

                 
1 1

n n

n n

D E
∞ ∞

= =

⇒ ⊆U U ,the reverse inequality is clear from (i) and    
1 1

n n

n n

D E
∞ ∞

= =

=U U
 

Since  
,

1

n

n

X E
∞

=

∈U then x  belongs to at least  one of the '
n

E s  
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5.3.0  The   Lebesgue  Integral For  Non-negative  Simple Functions 

5.3.1  Definition ,  Indicator or Characteristic  Functions 

  Let  ( , )FΩ  be a measurable space for a set  A ⊆ Ω   define 

 {0,1}
A

X →   by   
0;

( )
1;A

x A
x

x A
χ

∈
= 

∉
    this function is called the characteristic  

    or the indicator function of a set. If A
f I=   where  i. e   ;

A e
I RΩ →    

 and  
1;

( )
0;

A

x A
I x

x A

∈
= 

∉
   and     

 

( ) 1. ( ) 0. ( )c

A x d A Aχ µ µ µ= +∫  

5.3.2  Defination  ; Simple   Functions 

Suppose the range of S  consists of the distinct numbers  1 2
, .........

n
a a a  

   define  simple non-negative  function   ;
e

S RΩ →   by  
1

( ) ( )
i

n

i A

i

S x a xχ
=

=∑   where 0,
i i

a A F≥ ∀ ∈   

 and    
1

i

i

A
∞

=

∈ΩU ,      with   0
i j

A A =I      i j≠ . 

5.3.3   Example 

Consider   ([0,1], , )µΜ  ,define  
1; .. .. ..

( )
0; .. .. ..

if x is rational
f x

if x is irrational


= 


  . 

This is a simple function  with  1
[0,1]A Q= ∩   and  2 1 [0,1]c cA A Q= = ∩  

Note  that  f ∈Μ    and  
[0,1]

1. ( [0,1])fd Qµ µ= ∩∫ 0. ( [0,1]) 0cQµ+ ∩ =  

since  rational s  are countable then ( [0,1]) 0Qµ ∩ =                                                                                                 
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5.4.0   Lebesgue  Integration 

5.4.1  Lebesgue  Integral  Of  Non-negative Simple  Functions  

Integration is defined on a measure X  in which F  is the  ringΩ −  of measurable sets  and  µ  

  is the measure  on it. Suppose    

1

( ) ( )
i

n

i A

i

S x a xχ
=

=∑    where  i
A F∀ ∈

 ,
1

i

i

A
∞

=

= ΩU   and
   

 0
i

a R≥ ∈    is measurable   and      if  S   is measurable space ( , , )F µΩ   and non-negative, 

 we define  

1

( ) ( )
n

i i

i

S x d a A Sdµ µ µ
=

= =∑∫ ∫    or   ( )E

E

Sd SupI sµ =∫   ………………(a) 

 The left side of  (a)  is  the  lebesgue integral  of  S ,with respect to µ  over the set  E 

5.4.2   Properties  Of  The  Integral 

1. The integral is a non-negative extended real number  0 Sdµ≤ ≤ +∞∫  

2. If  
1 2 0, ,s s s L+∈    and  

e
Rα ∈   such that  0α ≥  , the 

              (a) 0s Lα +∈    and  ( )s d sdα µ α µ=∫ ∫  

              (b) 
1 2 0s s L

++ ∈    then  1 2 1 2( )s s d s d s dµ µ µ+ = +∫ ∫ ∫  

              (c)If  
1 2

s s≤    then   1 2s d s dµ µ≤∫ ∫
         

 

              (d)If { , 1}
n

s n ≥   is an increasing  sequence functions in 
0L+   such that  lim ( ) ( )n

n
S x s x

→∞
=   

                                     x R∀ ∈   then   ( ) ( ) lim ( ) ( )n
n

s x d x s x d xµ µ
→∞

=∫ ∫
 

 



 

 

 

51 

 

5.5.0  The Integral Of a Non-Negative Measurable  Functions 

5.5.1 Definition 

Let  ( , )FΩ   be a measurable space ,the  non-negative functions  ;
e

f RΩ →   is said to be   

F − measurable, If  ∃  an increasing sequence  { ; 1}
n

S n ≥   such that  lim ( ) ( )n
n

S x f x
→∞

=     

  x∀ ∈Ω , we shall denote the   class of all non-negative measurable function  by  L
+ . 

5.5.2  Theorem 

(a)Suppose f  is measurable and nonnegative on X .For  A∈ Μ ,  define 

 ( )
A

A fdφ µ= ∫   , then φ  is count ably   additive  on Μ  

(b)The same conclusion  holds if  ( )f L µ∈   on X  

Proof 

To show 
1

( ) ( )
n

n

A Aφ φ
∞

=

=∑ , In general case, we have ,for every measurable simple  

functions S   such that 0 s f≤ ≤          ,
1 1

( )

n

n

n nA A

sd sd Aµ µ φ
∞ ∞

= =

= ≤∑ ∑∫ ∫    
1

( ) ( )n

n

A Aφ φ
∞

=

∴ ≤∑  

Now  if  ( )
n

Aφ = +∞   for some n, is  trivial ,since ( ) ( )
n

A Aφ φ≥  

suppose ( )
n

Aφ < ∞   for every  n ,such that 1 2 1 2
( ) ( ) ( )A A A Aφ φ φ∪ ≠≥ +  

it now follows that for every n     1
( ...... ) ( ) ...... ( )

n n
A A A Aφ φ φ∪ ∪ ≥ + +   since  

1
......

n
A A A⊃ ∪ ∪  

1

( ) ( )n

n

A Aφ φ
∞

=

⇒ ≥∑  

5.5.3   Definition   ;For a function  f L
+∈   , we define the integral of  f   with respect t o  µ   

       by  ( ) ( ) lim ( )n
n

f x d x S x d xµ µ
→∞

=∫ ∫
 

 



 

 

 

52 

 

5.5.4    Properties   Of   the  Integrals 

Let  
1 2 3
, ,f f f    then the following holds 

1. 0fdµ ≥∫     and   for  1 2
f f≥       1 2f d f dµ µ⇒ ≥∫ ∫    

 2.For  , 0α β ≥   ,  we have  1 2f f Lα α ++ ∈   

   and    1 2 1 2( )f f d f d f dα β µ α µ β µ+ = +∫ ∫ ∫  1 2f d f dα µ β µ= +∫ ∫  

 3.For  every E F∈   ,  we have  
E f Lχ +∈    and if  υ ( )E = E fdχ µ∫   is  a measure on  F  

            And  ( ) 0Eυ =   iff   ( ) 0Eµ =  ,  the integral   E

E

fd fdχ µ µ=∫ ∫ . 

5.6.0  Monotone  Convergence Theorem( . .M C T   theorem) 

Let  ( , , )X µℵ   be a measure space , ( )
n

f   be  a sequence  on  *( , )M X ℵ   s. t  1n n
f f +≤     n N∀ ∈  

and  
n

f f→   point wise on  X ,  then  1( )n nf dµ ∞
=∫    converges to  fdµ∫   in  

e
R  i. e 

lim (lim )n n
n n

f d f d fdµ µ µ
→∞ →∞

= =∫ ∫ ∫
 

Proof 

*(
n

f m x∈ ,)    n R∀ ∈    and  n
f f→    point wise  on  X  *( , )f m X χ⇒ ∈      

since    
1n n

f f f+≤ ≤   by monotone properties of  S , we have that  1 ...( )n nf d f d fd iµ µ µ+≤ ≤∫ ∫ ∫  

  Thus  the sequence  1( )n nf dµ ∞
=∫  is increasing in *

eR   and hence  
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Conversely, If  { ; ( )}
n n

A x X x f xαφ= ∈ ≤   it can be shown that  
n

A ∈ℵ    n N∀ ∈  

  Moreover  (i) 1n n
A A +⊆    (ii)   

1

n

n

A X
∞

=

=U  

Since  integral  is a count ably  additive  set function ( ) ( )
n

x f xαφ ≤   on  
n

x A∈  ,  

by monotone  property of  ∫   on  m*(x,ℵ )  , nd f dαφ µ µ≤∫ ∫  

  i.e 

n

n n

A x

d f d f d fdα φ µ µ µ µ≤ ≤ ≤∫ ∫ ∫ ∫  …………(ii) 

the two inequalities proof the  theorem. 

 Remark; If   we  define   ;λ ℵ e
R→      by     ( )

E

E dλ φ µ= ∫       E∀ ∈ ℵ    

 The ( )Eλ  is a measure  and therefore  λ  is continuous  from  below. 

Proof 

0

1
i

n

i A

i

L aφ φ χ+

=

∈ ⇒ =∑ ,   
1

n

i

i

A
=

= ΩU  

          
1

I

n

E i A E

i

E F aφχ χ χ
=

∈ ⇒ =∑ =
1

i

n

i A E

i

a χ ∩
=
∑  

where   ( ) EE dλ φχ µ= ∫
1

( )
n

i i

i

a A Eµ
=

= ∩∑  is it a measure or not  

   (i)
1

( ) ( )
n

i

i

a Aλ φ µ
=

= ∩∅∑
1

( ) 0
n

i

i

a µ
=

= ∅ =∑  

  (ii)Since  0
i

a ≥   and  ( ) 0
i

A Eµ ∩ ≥   
1

( ) 0
n

i i

i

a A Eµ
=

⇒ ∩ ≥∑
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(iii) λ   is  countable additive ,for  let   
1

;
j j

j

E E E F
∞

=

= ∈U  for each j

 

 then to show that  
1

( ) ( )j

j

E Eλ λ
∞

=

=∑
     

 
1

( ) ( )
n

i i j

i

E a A Eλ µ
=

= ∩∑
1 1

( )
n

n i j

j j

a A Eµ
∞

= =

= ∩∑ U  

                            
1 1

( ( ))
n

i i j

i j

a A Eµ
∞

= =

= ∩∑ U
1 1

( )
n

i i j

i j

a A Eµ
∞

= =

= ∩∑ ∑  

                             
1

( )i i j

j

a A Eµ
∞

=

= ∩∑∑
1

( )j

j

Eλ
∞

=

=∑
     

( )Eλ∴   is  a measure.   

5.6.1  Some  Applications  Of  M.C.T. 

Theorem; Let  ( , , )X µℵ  be a measure  space  and  *( , )m X ℵ  and  C  non-negative 

real  ,then  (i)  cfd c fdµ µ=∫ ∫                   (ii) ( )f g d fd gdµ µ µ+ = +∫ ∫ ∫  

Proof 

Let  ( )
n

φ , ( )
n

ψ   be  increasing  ( )↑  sequence  of  simple  ( ) *( , )
n

f s M X∈ ℵ  such 

that  ( ) ( )n increasesφ ↑   to  f  and  ( ) ( )n increases toψ ↑   g . 

n
cφ⇒   is  increasing  sequence   by  M.C.T       , lim (lim )n n n n

n n
d d fdφ φ µ

→∞ →∞
= =∫ ∫ ∫  

    lim n
n

c dn cfdφ µ
→∞

=∫ ∫ ………….*           But   nc d c fdφ µ µ=∫ ∫  

lim limn n
n n

c d c dφ µ φ µ
→∞ →∞

∴ =∫ ∫ lim ......**n
n

c d c fdφ µ µ
→∞

= =∫ ∫
 

Thus  from  *  and  **  we  have       cfd c fdµ µ=∫ ∫  .    
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(ii)  by  M.C.T      lim (lim )n n
n n

d d gdψ µ ψ µ µ
→∞ →∞

= =∫ ∫ ∫  

       Now  ( )
n n

φ ψ+   increases ( )↑  to  f g+  by  M.C.T 

     lim ( ) ( ) .....*n n
n

d f g dφ ψ µ µ
→∞

+ = +∫ ∫  

Since  n
φ   and  n

ψ   are  simple   ' *( , )
n

f s M X∈ ℵ   

     ( )n n n nd d dφ ψ µ φ µ ψ µ+ = +∫ ∫ ∫  

  Thus  lim ( ) ......**n n
n

d fd gdφ ψ µ µ µ
→∞

+ = +∫ ∫ ∫  

From   *   and  **  we  have   ( )f g d fd gdµ µ µ+ = +∫ ∫ ∫  

5.6.2 Example

 
Let ( , ( ), )R B R µ   be a measurable space , where µ   is the  lebesgue  measure on  ( )B R  

 Let  
(0, )n nf χ=      n N∀ ∈    ,where  

n
f   is monotonic increasing to  

[0, ]f χ +∞∈    

     and n
f   and f   are  ( )B R  measurable functions 

                                     [0, ] [0, ]n nf d d n nµ χ µ µ= = =∫ ∫  

                                      and [0, ] ([0, ])nfd dµ χ µ µ= = +∞ = ∞∫ ∫  

                                       Now   fdµ = +∫  lim
n

n
→∞

∞ = = +∞    and ∴ M.C.T applies.  
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             5.7.0  Fatou’s   Lemma 

             Let ( ,X ℵ , )µ   be a  measure space ,  

             and ( )
n

f  be a sequence of elements of 
*(M x ,ℵ ), 

             Then (lim ) limn n
n n

f d f dµ µ
→∞ →∞

≤∫ ∫  

 

              Proof 

             For each  n N∈ ,let 1
inf{ , ,........}

n n n
f f f += , 

             clearly  *(nf M x∈ ,ℵ )  n N∀ ∈       and  ( ) limn n
n

f f
→∞

↑=  

              Hence by M.C.T    lim (lim )n n
n n

f d f dµ µ
→∞ →∞

=∫ ∫  

             i.e (lim ) lim ........*n n
n n

f d f dµ µ
→∞ →∞

=∫ ∫  

               now  m n
f f≤      m n∀ ≤      

               By monotone  property   n mf d f dµ µ≤∫ ∫  

              Taking the limits  

              lim lim .........**m n
m n

f d f dµ µ
→∞ →∞

≤∫ ∫  

               from  * and **, we have     (lim ) limn n
n n

f d fµ
→∞ →∞

≤∫ ∫
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 5.7.1  Theorem 

Let ( ,X ℵ , )µ   be a measure space and  
*

, (f g M x∈ , )µ   and   f g≤  

Let E   and  F ∈ ℵ   such that  E F⊆  then(i) fd gdµ µ≤∫ ∫  and (ii)   
E F

fd fdµ µ≤∫ ∫  

Proof 

(i)If  
*( ,M xφ ∈ ℵ )  is simple and  fφ ≤   then  gφ ≤  ,further if ( )fΩ   is a set of all simple 

 functions  ,such that fφ ≤    then  ( )gφ ∈Ω  ( simple functions s. t  gφ ≤ )  i. e ( ) ( )f gΩ ∈Ω   

and hence   
( ) ( )f g

Sup d Sup dφ µ φ µ
Ω Ω

≤∫ ∫    i. e   fd gdµ µ≤∫ ∫  

(ii)Consider *; ( , )E FfX fX M x∈ ℵ )          Since   E F⊆ ,   E F
fX fX⇒ ≤  

By part (i) and   monotony   E FfX d fX dµ µ≤∫ ∫      and
E F

fd fdµ µ≤∫ ∫  

5.7.2  Example 

Consider ([0,1], , )F µ  ,and take  
1 2

[ , ]
n

n n

g nχ=  

 Note that 0
n

g →    in  [0,1], now   1 2
[ , ]

.n

n n

g dn n dnχ=∫ ∫ =
1 2 1

([ , ]) . 1n n
n n n

µ = =  

  lim lim1 1n
n n

g dµ
→∞ →∞

⇒ = =∫  Such that  0 lim n n
n

gdn g d
→∞

= ≠∫ ∫  ,M.C.T. does not apply 

Now 0
n

g →    on  [0,1],  i.e  (liminf ) 0 0n
n

g d dµ µ
→∞

= =∫ ∫
   

And  liminf liminf 1 1n
n n

g dµ
→∞ →∞

= =∫ ∴ (liminf ) 0 liminfn n
n n

g g dµ
→∞ →∞

= ≤∫ ∫ ,  

 fatou’s  lemma apply                                                                       
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5.8.0   Lebesgue Dominated Convergence Theorem(L.D.C.T)  

  Suppose 
1( )

n
f

∞
 
 
is  a sequence of measurable functions which converges   . ,a eµ   to a function f . 

 Let g be an integrable functions such that | |
n

f g≤ Then f  is integrable and  lim n
n

f d fdµ µ
→∞

=∫ ∫  , 

 the function  g  is called a dominating  function  for the sequence  1( ) .nf
∞

 

Proof. 

Since   0
n

f g+ ≥   , fatou’s  lemma  shows that   ( ) liminf ( )n
n

E

f g d f g dµ µ
→∞

+ ≤ +∫ ∫  e  

liminf ...( )n
n

E

fd f d iµ µ
→∞

≤∫ ∫ Since  0
n

g f− ≥   similarly   

( ) liminf ( )n
n

E

g f d g f dµ µ
→∞

− ≤ −∫ ∫
    

liminf[ ]n
n

E E

fd f dµ µ
→∞

− ≤ −∫ ∫
 

which is the same as lim n
n

E E

fd Sup f dµ µ
→∞

≥∫ ∫   …(ii) From  (i) and (ii)  we  have  lim n
n

E E

f d fdµ µ
→∞

=∫ ∫  

5.8.1  Example . Let  
1

[0, ]
n

n

f nχ=   for 1, 2,3,n =  ,….,This functions 
1; (0; )

( )
0;

n

n x
nf x

otherwises

 ∈
= 


,  

  hence  ( )
n

f x  cannot   be dominated by a single integrable functions .Further  at   any  point in  (0,1]  

 the  sequence  contains only finite number of non-zero terms and indefinite number of zeros and at 

 any point outside (0,1], each term of the sequence is zero Hence lim ( ) 0n
n

f x
→∞

=   for all  x n∈ ,    

Thus  we have   Further         

1

1
(0, )

0

1 1
((0, ] . 1

n

n

nR

f xdx n dx n dx nm n
n n

χ= = = = =∫ ∫ ∫   

,Thus ( ) 1n

R

f x dx =∫   for all  .Hence  lim 1 0 lim ( )n n
n n

R R

f dx f x dx
→∞ →∞

= ≠ =∫ ∫  .   
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5.8.2   Example2 

Show that  
1

0

lim ( ) 0n
n

f x
→∞

=∫     ,where   
2 21

n

nx
f

n x
=

+
          

Sol 

Let  
2 21

2

n x
nx

+
=   so that  

2 2

1

1

nx

n x n
<

+
 

     Let  
1

( )
2

g x =  .    since a constant is integrable,  ( )g x  is integrable 

Hence  
2 2

( ) ( )
1

n

nx
f x g x

n x
= <

+
 , ( )

n
f x  is dominated by an integrable function ( )g x  

  Further  
2 2

lim ( ) lim 0
1

n
n n

nx
f x

n x→∞ →∞
= =

+
 ,  So  that  fn(x)→0   as n→∞  

 Hence by lebesgue’s dominated convergence  theorem 

1 1

2 2

0 0

lim 0 0
1n

nx
dx dx

n x→∞
= =

+∫ ∫    

5.8.3    Properties Of  Lebesgue Integral For Bounded Measurable Functions  

(a)If  f  is measurable and bounded on E  , and ( )Eµ < ∞   , then  ( )f µ∈l   on  E  

 (b)If   ( )a f x b≤ ≤     for   x E∈ ,  and  ( )Eµ < +∞  , then  ( ) ( )
E

a E fd b Eµ µ µ≤ ≤∫   . 

  (c )If f   and  ( )g µ∈l   on  E   and if  ( ) ( )f x g x≤   for  x E∈  then  
E E

fd gdµ µ≤∫ ∫  

   (d)If  ( )f µ∈l   on E  , then  ( )cf µ∈l   on E  , and  
E E

cfd c fdµ µ=∫ ∫         

     (e)If   ( )f µ∈l   on E   and  A E⊂ then ( )f µ∈l   on  A . 
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CHAPTER   SIX 

COMPARISON  OF  RIEMANN  INTEGRAL  AND  LIBESGUE  INTEGRAL  THEORIES 

6.1.0  Theorem(Equivalence of  Riemann  and  Lebesgue) 

(a) If  f R∈   on [a, b],  the  f L∈   on [a, b]  and  

b b

a a

fdx R f dx=∫ ∫ . 

(b) Suppose  f  is bounded  on [ , ]a b ,the  f R∈   on [ , ]a b  if  and  only  if  f  

is  continuous almost  everywhere  on  [ , ].a b  

Proof   ;(a)Suppose  f  is bounded , then there  is  a  sequence { }kp   of   partitions  of  [ , ]a b such  that  

 
1{ }kp +   such that  the  distance between the adjacent points of 

kP  is  less  than 
1

k
and  such that  

lim ( , ) ,k
n

L p f R fdx
→∞

−

= ∫   lim ( , )k
n

U p f R fdx

−

→∞
= ∫ , all the  integrals are taken over [ , ]a b . 

If  1{ , ,...... }k o np x x x=  with  ox a=    and nx b=   define   ,Putting  ( )k iU a M=    and  ( )k iL a m=   for  

1i ix x x− < < ,1 i n≤ ≤   and   hence ( , ) ,k kL p f L dx= ∫   ( , )k k kU p f U dx= ∫  so  that  

1 2 2 1( ) ( ) ........ ( )...... ( ) ( )L x L x f x U x U x≤ ≤ ≤ for  all  [ , ],x a b∈ since  1kp +   refines kp .Thus  there  exist 

( ) lim ( )k
k

L x L x
→∞

=
,

lim ( )k k
n

U U x
→∞

= and  we  observe  that  L    and  U   are  bounded   and  measurable   

functions  on  [ , ]a b that  ( ) ( ) ( )L x f x U x≤ ≤    where  ( )a x b≤ ≤ ,and  that  ,Ldx R fdx
−

=∫ ∫          

Udx R fdx

−

=∫ ∫ , by   the  monotone  convergence  theorem, where  the  only  assumption  is  that  f  is  a  

bounded  real  function  on  [ , ]a b .We  note  that  f R∈ , if   and  only   if  its  upper  and  lower  

 Riemann integrals  are  equal. hence if  and  only  if  Ldx Udx=∫ ∫ ,  since  L U≤ , Ldx Udx=∫ ∫
 

  happens  if  and  only if  ( ) ( )L x U x=   for  all  [ , ],x a b∈   

  in this  case ( ) ( ) ( ) ( ) ( ) ( )L x f x U x L x f x U x≤ ≤ ⇒ = =  

almost  everywhere  on  [ , ]a b ,  so  that  f is  measurable, thus  

b b

a a

fdx R fdx=∫ ∫    
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(b)Furthermore ,if x belongs to number kp ,it is quite easy to see that  ( ) ( )U x L x=   if  and only 

if f is continuous at x .Since  the  union of  sets  
kP  is  countable, it’s measure  is  0,and  we 

conclude  that f  is  continuous  almost everywhere on [ , ]a b  if  and only if  ( ) ( )L x U x=  almost 

everywhere, Hence  

b b

a a

fdx R fdx=∫ ∫   if  and   only  if  f R∈ .This  completes  the  proof.  

6.1.1  Example  ;   Evaluate  { } { }
{ } { }

5

0

0;0 1

( ) 1; 1 2 3 4

2; 2 3 4 5

x

f x dx x x

x x

 ≤ ≤


= ≤ ≤ ∪ ≤ ≤
 ≤ ≤ ∪ ≤ ≤

∫   by  using  the Riemann  

 and  Libesgue   definitions  of  integrals. 

(I)Using  Riemann  definition  of  the  integrals(where the  subdivisions  is taken  of  the  segments [ , ]a b ) 

by  the  subdivisions  points  0 1 2, , ,........ nx x x x    on  X − axis. 

            Y 

 

                 
0

         
1

       
2

     
3

       
4

       
5

  
X

                 

the   upper   and  lower  Riemann  sums  tends  to  common  value 

0(1 0) 1(2 1) 2(3 2) 1(4 3) 2(5 4) 6− + − + − + − + − =       thus  ( ) 6

b

a

R f x dx =∫
 

(II)Evaluating  the  lebesgue integral  where the sub-divisions  is that of the interval [0,2 ], 0δ δ+ ≥  

      we get  ,0[1 0] 1[(2 1) (4 3)] 2[(3 2) (5 4)] 6− + − + − + − + − =     thus 

5

0

( ) 6L f x dx =∫   
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6.1.2  Example 2 

Let  f  be defined  on  [ , ]a b  as  follows   
0; .. ..

( )
1; .. .. ..

if x rational
f x

if x is irrational


= 


, prove  that  f   is 

lebesgue   integrable  but  not  Riemann  integrable. 

Solution 

Consider  a  partition  
1{ , ........ }oP a x x x b= = < < < =   of  [ , ]a b .Then 1iM = in

1[ , ]i ix x−  

and 0im =  in 1[ , ]ix x−  ,Hence  
1( )p i iS x x b a−= − = −∑    and  

10( ) 0p i is x x −= − =∑  

so  that  R ( ) ( )

b

a

R f x dx b a

−

= −∫   and  ( ) 0

b

a

R f x dx
−

=∫ .This  shows that  f  is  not  Riemann 

integrable. We prove that  f  is lebesgue  integrable. 

Let  Q  be the  set  of  all rationales’ in [ , ]a b ,then CQ  is the set of  irrationals in [ , ]a b ,where 

[ , ]a b Q CQ= ∪   and Q CQ∩ = ∅ .Since Q  is  countable set  it has a measure  and hence 

it  is measurable in [ , ]a b  and since the complement of a set is measurable, CQ  is measurable. 

By definitions  f  is the characteristic  functions  of  CQ ,Since  CQ  is  measurable, 

f is measurable function. As f is bounded, it  is  integrable. 

The  lebesgue integral  of  f  is 

b

a Q CQ Q CQ

fdx fdx fdx fdx
∪

= = +∫ ∫ ∫ ∫  

as  0. ( ) 1 ( ) ( )Q CQ m Q m CQ m CQ∩ = + = .Next we find the measure CQ
 

 If  
1E  and

2E   are disjoint measurable sets  then 
1 2 1 2 1 2( ) ( ) ( ) ( )m E m E m E E m E E+ = ∪ + ∩

 

where 1E Q=   and  2 ,E CQ=   taking  ( ) ( ) ([ , ]) ( )m Q m CQ m a b m+ = + ∅ , since ( ) 0m ∅ = we  have 

( ) ( ),m CQ b a= − thus  ( )

b

a

fdx b a= −∫ .Hence  f  is lebesgue  integrable  but  not Riemann  Integrable.
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6.2.0   Comparison of Lebesgue  and Riemann Integrals For Unbounded Functions. 

Let  f  be a non-negative measurable functions on [ , ]a b  . For each [ , ]x a b∈   and  n N∈ . 

 we define a  function       
( );0 ( )

( , )
; ( ) 0

f x f x n
F x n

n f x

≤ ≤
= 

>
                               

     Y                                                                                               Y  

 

 

 

                                                                                        X                                                                                           X  

Thus  ( , ) min( ( ), )F x n f x n=   ,   ( , )F x n    being the minimum of  ( )f x   and hence measurable.  

Which implies that for   each n N∈  ,  ( , )F x n   is  lebesgue  integrable. 

Now   if    lim ( , )

b

n
a

F x n dx
→∞ ∫   exist finitely then we say that the unbounded function  f  is lebesgue        

integrable    and  lim ( , )

b b

n
a a

fdx F x n dx
→∞

=∫ ∫ .    

  If the limit does not exist finitely then f  is not lebesgue  integrable The function ( , )F x n   is called 

 truncated function. 

6.2.1 Example 

Define 
2

3

1 ;0 1
( )

0; 0

x
xf x

x

 < <
= 
 =

 show that f is lebesgue  integrable on [0,1] and ∫1/x2/3dx=3 

Find also F(x,2), since 1/x2/3→∞, as x→0, so f is unbounded in [0,1].   In order  to examine 

Its lebesgue integral define d by  F(x, n)=1/x2/3,  if 1/n3/2≤x≤1 

                                                                            =  -1/3n-3/2 if   0<x<1/n3/2 

                                                                                                                        =0     if x                                                                                              
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For n=2    

2 3
3 2

3
2

3
2

1 1, 1
2

1 1( ,2) , ,0
3

0, , 0

if x
x

F x n if x
n

if x

−

 ≤ ≤




= − < <

 =


           

Now 

3
2

3
2

1
(

1 1

10 0

( , ) ( , ) ( , )
n

n

F x n dx F x n dx F x n dx= +∫ ∫ ∫  

                                 

1
2

1

1
3

2
2

310
3

2

1 1

3

n

n

n dx dx
x

−
= − +∫ ∫

1
3

3
2

1 1
3(1 ( )

n n
= + −    

2
3 , n

n
= − ∀   

Thus by the definition of lebesgue integral of unbounded functions ,we  have  

     
2

( ) lim ( , ) lim(3 ) 3
n n

f x dx F x n dx
n→∞ →∞

= = − =∫ ∫    

 6.2.2   REMARK 

The Riemann integral of f  on unbounded set A  can exist even though the Riemann integral of | |f  does  

 not exist on  A .   For example, 

0

sin sin
lim

b

n
a

x x
R dx R dx

x x

∞

→∞
=∫ ∫   exists  as an improper  Riemann integral  

 wheres the integral  

0

sin
| |

x
dx

x

∞

∫   does not exist. On the contrary the lebesgue integral of  

0

sin x
L dx

x

∞

∫  does 

 not exist  because  

0

sin
| |

x
dx

x

∞

∫    does not exist   ,It   shows  that there exists improper Riemann integrals 

which are not integrable  in lebesgue sense. This  Indicates that nothing can be said about the equality of  

the two integrals when A  is unbounded,  Riemann integrals may exists when the lebesgue integral does not 

exists. Moreover if | |f   is Riemann integrable on A  , then f  is both Riemann and Lebesgue   integrable  

on A  and the two  integrals are equal. 
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6.3.0 (III)Libesgue and Riemann Integrals and The Connection Between Integration And Different ion. 

6.3.1 Definition,  Let   an interval  of  ( , )R a b    be divided into N  equal parts each of length  
b a

x
N

−
∆ =

 

                        Y  

                                                                                               a i x+ ∆  

                                                                                           

                                   a         2a x+ ∆         
ix   ( 1)b a i x= + + ∆   

X
       

   Let  [ , ( 1) ]x a i x a i x∈ + ∆ + + ∆    then 
0

1

lim ( )
N

i
x

i

f x x
∆ →

=

∆∑    as   N →∞     is called the de^inite 

 integral of   f(x) in  the interval ( , )a b   and is denoted by ( )

b

a

f x dx∫ . 

6.3.2 Theorem(fundamental theorem of differential calculus) 

Let  ( )f x   have   anti derivatives ( )F x  in the interval  [ , ]a b Then  ( ) ( ) ( )F b F a f x dx− = ∫ .  

proof, Let   ( )F x   be the anti derivatives  of   ( )f x   the from mean value theorem                                            

 1 0 0( ) ( ) '( )F x F x F c x− = ∆
          

 

2 1 1( ) ( ) '( )F x F x F c x− = ∆  

1

1

( ) ( ) '( )

( ) ( ) '( )

n n n

n n i

F x F x F c x

F x F x F c x

+

+

− = ∆

− = ∆
       which implies   ( ) ( ) ( )

b

a

F b F a F x dx− = ∫     . 

6.3.3  Connection  ;This familiar connection between integration and  differentiation  is carried over into 

lebesgue theory.  For  if  f ∈l   on  [ , ]a b   and  ( ) ( )F x f t dt= ∫   (a<x<b), then '( ) ( )F x f x=  almost 

everywhere on [a,b].Conversely, If  F   is differentiable  at every point on [ , ]a b {almost everywhere not  

good enough}  And if  ' [ , ]F L a b∈   then ( ) ( ) '( )

b

a

F b F a F t− = ∫        ( )a x b≤ ≤  
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6.3.4  Theorem 

Let f  be  continuous  function on [a, b], Then  (i) f  is integrable  on [a b] 

           (ii)If  F(x)= ( )

x

a

f t dt∫ ,where ,a x b< < then ( )F x  is differentiable and '( ) ( )F x f x= . 

Proof 

(i)Since  f  is continuous on [a,b],it is measurable on [a,b] 

As a continuous functions is bounded on, let | |f M≤ ,taking  g M=  in the property,  thus 

f  is integrable on [a,b]. 

(ii)Let  [ , ]A a x= , [ , ]B x x h= +  so that  [ , ]A B a x h∪ = +  

Now we have ,

x x h

A B a x

fdx fdx fdx

+

∪

= +∫ ∫ ∫ using notation  ( ),F x we have 

( ) ( ) ,

x h

x

F x h F x fdx

+

+ = + ∫ which gives ( ) ( ) ( ),....( )

x h

x

F x h F x f t i

+

+ − = ∫  

Since f  is continuous function and the measure is the lebesgue measure, 

we obtained earlier that  ( , ) ( ) ( , )

x h

x

m x x h f t dt x x h M

+

+ ≤ ≤ +∫    where ( )L f t M≤ ≤  

and  [ , ]t x x h∈ + , For  L  and M are bounds of continuous function   f  on [a,b]. 

Hence there is a point ε  in[ , ]x x h+   such that ( ) ....(2)

x h

x

f t dt hf ε
+

=∫  where xε θ= + . 

using (1) and (2) we have that  ( ) ( ) ( ),F x h F x hf ε+ − = since  0h ≠  dividing   by 

h  and taking the limits as 0,h →  we  have 
( ) ( )

lim ( )
h

F x h F x
f x

h→∞

+ −
=   

which proves that '( ) ( )F x f x=    

In term of recovery  of  derivative  functions  the  two  integral  are  are  effective. 
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6.4.0    (IV)   Functions   Of Class  
2

L  

As an application of the lebesgue theory, perseval theorem and Bessels theorem already proved for  

Riemann integrable functions are extended to lebesgue functions.   

Definitions 

A  trigonometric  polynomials  is  a finite  sum  of  the  form 

           ( )f x a= ( ) ( cos sin )
N

o n n

N

f x a a nx b nx
−

= + +∑       ( )x real−  

Where  1.......... , ............
o N N

a a b b  are  complete  numbers, the  sum  can  also 

be  written  in  the  form   ( )
N

inx

n

N

f x c e
−

=∑            ( )x real−  

 6.4.1 Definitions 

We say a sequence of complex functions  { }
n

φ   is an orthonormal set of functions  on a measurable 

  Space x  if   
n m

x

dφ φ µ∫ =  
0;( )

1;( )

n m

n m

≠


=
 ,in particular ,we must have 

2 ( )
n

φ µ= l , If  
2
( )f µ∈ l    

and  If   
n n

x

c f dφ µ= ∫   (n=1,2,3,…………..),we write f  ~ 
1

n n

n

c φ
∞

=
∑ .  

    The definitions  of trigonometric  Fourier series  in  
2L (or even to  L )   on ( , )π π−  

6.4.2 Theorem(Bessel Inequality) 

If  { }
n

φ    is an ortho normal  on  [ , ]a b   and if  ( )f x  ~
1

( )
n n

n

c xφ
∞

=
∑  

  Then  2 2

1

| | | ( ) |

b

n

n a

c f x dx
∞

=

≤∑ ∫   ,in particular  lim 0
n

n
c

→∞
= , 

 The bessel    inequality  hold for any  2 ( )f µ∈ l  . 
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 6.4.3    Parseval’s  Theorem(Riemann version). 

Suppose f  and  g  are Riemann integrable functions with period  2π  , and  ( )f x ~
inx

nc e
∞

−∞
∑ ,         

    

     ,                 

( )g x  ~ 
inx

n
eγ

∞

−∞
∑  , Then  21

lim | ( ) ( ; ) | 0
2

N
n

f x S f x dx

π

ππ→∞
−

− =∫  

                                                          
_ _1

( ) ( )
2

n n
f x g x dx c

π

π

γ
π

∞

−∞−

=∑∫  

                                                               2 21
| ( ) | | |

2
n

f x dx c

π

ππ

∞

−∞−

=∑∫  

Proof 

Using the notation  
1

2
2

1
|| || { | ( ) | }

2
h h x dx

π

ππ −

= ∫    let 0ε >  be given. Since f R∈    and  ( ) ( )f fπ π= − ,  

by construction we obtain a continuous   2π − periodic function  h with || ||f h ε− <   and we find  a  

trigonometric polynomials P  such that  | ( ) ( ) |h x p x ε− <  for all  x . 

Hence || ||h p ε− <  .If  P  has degree No. Thus 2|| ( ) || || ||
N

h S h h p ε− ≤ − <  , for all 
0N N≥  .  

by bessel’s inequality  w ith  h f−  in place of f  ,  
2 2 2|| ( ) ( ) || || ( ) || || ||

N N N
S h S f S h f h f ε− = − ≤ − <  

Now applying triangle inequality shows that 
2|| ( ) || 3

N
f S f ε− <     

0N N≥  

               Thus  21
lim | ( ) ( ; ) | 0

2
N

n
f x S f x dx

π

ππ→∞
−

− =∫  

              Next   
_ _ _1 1

( ) ( )
2 2

N N
inx

N n n n

N N

S f gdx c e g x dx c

π π

π π

γ
π π− −− −

= =∑ ∑∫ ∫  

    And the Schwarz inequality shows that 

     |
1_ _

2 2| ( ) | | ( ) || | { | | | | }N N Nf g S f g f S f g f S g− ≤ − ≤ −∫ ∫ ∫ ∫ ∫ , 

 which tends to zero as N→∞    ,if   g f=  
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6.4.4    Parseval  Theorem  For 
2

( )f µ∈l {lebesgue  version} 

Suppose        ( )f x  ~
inx

n
c e

∞

−∞
∑  …..(a)         ,where 2

f ∈ l   on [ , ]π π−  

Let  
n

S  be the partial sum of (a),  Then   lim || || 0
n

n
f S

→∞
− =  

    And  2 21
| | | |

2
n

c f dx

π

ππ

∞

−∞ −

=∑ ∫  

 

Proof 

Let  0ε >  be given   ,since 
1

2 2|| || { ( ) }

b

a

f g f g dx ε− = − <∫  ,  there is a continuous function g   

 such  that || ||
2

f g
ε

− <   .Moreover, we can arrange it so that  ( ) ( )g gπ π= −  ,then  g   

 can be extended to a  Periodic continuous  function  by  Perseval  Riemann version(earlier), 

there is a trigonometric polynomial T ,of degree N ,say, such that || ||
2

g T
ε

− <  . 

Hence by  Bessels  inequality (extended to 
2
l ), n N≥  implies || || || ||

n
S f T f ε− ≤ − <  

  thus lim || || 0
n

n
f S

→∞
− =  and hence  

2 21
| | | |

2
nc f dx

π

∞∞

−∞ −∞

=∑ ∫  , as proved in  perseval  Riemann version. 

6.4.5  Corollary 

If   2
f ∈ l  on [ , ]π π−    and if  ( ) inx

f x e dx o

π

π

−

−

=∫     ( 0, 1, 2, ..........)n = ± ± ±  then || || 0f =  ,Thus if two 

functions in  
2
l   have the same Fourier Series, they differ at most on a set of measure zero.  

LIbesgue  integral  simplify  the  norm  and  working  sums  in  
2
l   easier  this is not the case  with Riemann  

integral. 
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6.5.0  Integration of Complex(Analytic)Expressions. 

Complex expressions are well solved using   U-substitution and Riemann improper integrals, we now  

extend  this to lebesgue theory.     

 Suppose  is a complex-valued  function  defined on a measure space  and , 

  where   and  are real. We say  is measurable if and only if both  and  are measurable. 

It is easy to verify that sums and products of complex measurable functions 

 are again measurable   since    . 

Since  is measurable for every complex  measurable . Suppose   is a measure on ,  

   and    is a complex  function on  .We say that  on  provided that   is 

      measurable and        and we define  

Integral of  is finite since  ,   and    it is clear that finiteness of  

integral of , holds if and only if   and  on   . 

We  know   .    If   on ,  there  is a complex number ,  Such  

  that       .If we put   ,     and   real 

       then    ,the third of the above 

           Equalities holds since the preceding one show that   is real. 

  

 

( )V

f X f u iv= +

u v f u v

1

2 2 2| | ( )f u v= +

| |f f u X

E X ( )f u∈ l E f

| |f du < +∞∫
E E E

fdu udu i vdu= +∫ ∫ ∫

| |f | | | |u f≤ | | | |v f≤ | | | | | |f u v≤ +

| |f ( )u u∈ l ( )v u∈ l E

| | | |
E E

fdu f du≤∫ ∫ ( )f u∈ l E c | | 1c =

0
E

c fdu ≥∫ g cf u iv= = + u v

| | | |
E E E E E

fdu c fdu gdu udu f du= = = ≤∫ ∫ ∫ ∫ ∫

gdu∫
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6.6.0  The spaces. 

Let    and    or    or    denote the space of all complex valued 

measurable   functions on    such that   .The space   is called the  

 power  integrable       function of  

A   measurable  function  defined on  the segment     is called the   power  

summable    where  ,  if      ,  finite integrals. 

 The set of all such functions is denoted  .  

6.6.1  Example 

   i.e.   

            = =  =     

        But            Since        

                                                                               =    ,   

       
6.6.2  Example2

 
1

0

(5 2 )x dx−∫  

1
1

2

0

(5 2 )x dx= −∫   
3 1

0

1
(5 2 ) | 2

3
x= − − =   

  
   

         Now    

1

0

( ) 5 2f x xdx= −∫       =
2 1

0
5 | 4x x− =    

                                                                  
      

p
L −

0 p≤ ≤ ∞ ( )
p

L µ ( )
p

L Ω ( , , )
p

L F µΩ

Ω | |p
f dµ < ∞∫ ( )

p
L µ

th
P ( , , )F µΩ

( )f x [ , ]a b
thP

1P ≥ | ( ) |

b

p

a

f x dµ < ∞∫

[ , ]
p

L a b

1

1
( )

P
f x L

x
= ∈

1 1

0 0

( )
dx

f x dx
x

=∫ ∫

1

2

1
11 2

0
1

1
2

x
x dx

−
− +

=
− +

∫
1

22 2x x
−

=
1

0

( ) 2f x x=∫
1

0
| 2=

2 (0,1)f L∉
1 1 1

2

0 0 0

1
( ) ( )

dx
f x dx

xx
= =∫ ∫ ∫

ln | |x
1

0
| = ∞

12
p p

L L⊄

1p
f L∈

2p
f L∈

2 1p p
L L∴ ⊂
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The  two  examples  shows  that  integration  in 
2
l  and  of  complex  valued  functions  is not 

always  guaranteed even  though they  were  possible   in  1R   .Continuity  and  finiteness  of  

functions  therefore must be  considered  when  integrating. 

6.6.3  Proposition 

If    and  then  

Proof     ;Take    

                   

       

 Thus       

6.6.4   Definition 

For   ,    define    ,called the    norm of   

6.6.5   Properties 

(1)If  .The following  hold    iff    a. e . 

(2)The        

                        Proof 

                      

                                  

                                    

( )µ Ω ≤ ∞ 11 p≤ ≤ ∞
2 1p p

L L⊂

2p
f L∈

1 2| | | | 1
p p

f f≤ + x∀ ∈Ω

1 2| | | | 1.
p p

f d f d dµ µ µ⇒ ≤ + < +∞∫ ∫ ∫

1| |
p

f < +∞∫ 1
p

f L⇒ ∈
2 1p p

L L∴ ⊂

( )
p

f L µ∈
1

|| || ( | | ) pf f d µ= ∫
th

P ( )
p

f L µ∈

, ( )Pf g L µ∈ || || 0
p

f = 0f = ( )x µ

|| || | ||| ||
p p

f fα α= Cα∀ ∈

1

|| || ( | | )p p

pf f dα α µ= ∫

1

(| | | | )p p pf dα µ= ∫

1

| | ( | | )p pf dα µ= ∫ | ||| ||
p

fα=
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3. || || || || || ||p qfg f g≤ +  

Proof
 

Let p>1 and q>1  be  such that  (p and q are conjugate) 

Let     and  ,Then    and   

Note  that if  or   or  

                                 a.e   

Now   assume      and    

Apply  the Holder’s  lemma  by  putting   

                  

Substituting  in  the holders equalities     gives 

                    

Integrating  both sides of (1) with  respect  to measure  μ,  we obtain 

                        

                       

                         

                                                                         

1 1
1

p q
+ =

( )
p

f µ∈l ( )
q

g µ∈l
1( )fg µ∈ l

11

| | ( | | ) ( | | )
qqpfg f d gµ≤∫ ∫ ∫

|| || 0
p

f = || || 0
q

g = | | 0p
f dµ⇒ =∫ | | 0q

g dµ =∫

0fg⇒ = xµ

|| || 0f ≠ || || 0
q

g ≠

1
t

p
=

| |
( )
|| ||

p

p

f
a

f
=

| |
( )
|| ||

q

q

g
b

g
=

1
(1 )

t t
a b ta t b

− ≤ + −

| | | | 1 | | 1 | |
. ( ) ( ) ..............(1)

|| || || || || || || ||

p q

p q p q

f g f g

f g p f q g
≤ +

1 1 1
| | | | | |

|| || || || || || || ||

p q

p q p q

fg d f d g d
f g p f q g

µ µ µ≤ +∫ ∫ ∫

1 1 1
| | 1

|| || || ||
p q

fg d
f g p q

µ⇒ ≤ + =∫

| | || || || ||p qfg d f gµ⇒ ≤∫ || || || || || ||
p q

fg f g⇒ ≤
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CHAPTER  SEVEN
 

APPLICATION  OF  RIEMANN   AND  LIBESGUE   INTEGRAL   TO  TIME  SERIES   ANALYSIS  

REVIEW  (I) 

7.1.0   VARIATION ;The   variation  in  observation  can  be  due  to;- 

  (i)Treatment  effect’s          (ii)Random-error 

The  treatment  model  is  an  addition  model  of  the  form   ij i ij
y t eµ= + +  

where    (1) µ ;-   is  the  grand  mean  i.e  the mean  yield  if  no  treatment  is applied. 

               (2) 
i

t ;-  is  effect  of  the  
thi   treatment  .The  

thi   treatment  will  either  increase 

                     or  decrease    of  yield  by  
i

t . 

               (3) ij
e  is  the  randomization   error  effect. 

7.1.1   REGRESSION  MODEL. 

7.1.2   Definition  ;A  regression  model   is  a formal  means  of  expressing   the  two  essential   

ingredients  of   a  statistical  relation. 

(a)The  tendency  of  the  dependent  variable  Y  to  vary  both  with  the  independent  X   

      in  a  systematic  fashion. 

(b)A   scattering  of  points  around  the  line  of  a  statistical  relationship. 

7.1.3    Definition,  First  order model    When  there   are  two  independent  variable  
1x   and  

2x   the  

 regression  models  becomes 
1 1 2i o i i i

Y x xβ β β ε= + + +   is  called  a  first  order  regression  model  with   

two independent   variable.  where  
i

Y    is  the  dependent  variable   and  the  parameters  of  the  model    

 
o

β   ,
1β    and  

2β     and  the  error  term  is  
i

ε .The  parameter  
1β   indicates  the  change  in  the  mean  

response per  unit  increase   in   
1x  when  

2x   is  held  constant.  Also  
2β   indicates  the change   in  mean  

response  per   unit   increase  in  
2x  when  

1x   is  held  constant. 
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7.1.4   Example 

Suppose   
2x   is  held  constant  at   level   

2 20x = ,  the  regression  function 

1( ) 20 0.95 0.5(20)E Y x= + −    becomes    
1( ) 10 0.95E Y x= +  

7.1.5   General   Linear  Regression  Model  In  Matrix  Terms. 

In  matrix  terms  the  general   linear  regression   model  is  .....***Y x β ε
− −−

= +


 

where     Y


;-  is  the  vector   of  responses   i.e  

1

2

:

n

y

y
Y

y

 
 
 =
 
 
 


           

11 1

1 1

1 ...

: : : :

: : : :

1 ...

n

n np

x x

x

x x −

 
 
 =
 
 
  


 

β


   is the  vector   of  parameters.   For   example  if  1 1 2 2 1 1
......

i i i p ip
Y x x xβ β β β − −= + + + +  

                  
1

1

:

p

β

β
β

β −

 
 
 =
 
 
  

             and   

1

2

:

n

ε

ε
ε

ε

 
 
 =
 
 
 

  is  the  vector  of  independent  normal   variables 

with  expectation   ( ) 0E ε = . 

7.1.6   LEAST   SQUARES  ESTIMATORS 

Let  us  denote  the vector  of  estimated  regression  coefficients   
1 2 1

, , ,.....
o p

b b b b −   as   b   

       
1

1

:

o

n

b

b
b

b

−

−

 
 
 =
 
 
 

     .The  least  squires  normal   equations  for  general  regression    model   ***  

are    ( ' ) 'x x b x y
− − − −

=    and  the  least  squires  estimators   are    
1( ' )b x x x y

−

− − −
= .  
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7.1.7     FITTED   VALUES  AND  RESIDUALS 

Let   the  vectors  of  the  fitted  values   
iY   be  denoted  by   Y

∧

−
   and  the  vectors   of  the  residual 

terms   i i ie y y
∧

= −   be  denoted  by  e
−

      

1

2

:

n

y

y
Y

y

∧

∧
∧

∧

 
 
 
 =
 
 
 
 


        and    

1

2

:

n

e

e
e

e

−

 
 
 =
 
 
 

 

7.1.8   The   fitted  values  are  represented  by   Y xb
∧

− −
=


  and  residual  terms  by  e y y y xb

− ∧ −

−
= − = −



     The  

vectors  of  the  fitted  values  Y
∧

 can  be  expressed  in  terms  of  the  matrix  H
−

   as  follows 

            Y H Y
∧

−
=     where   

1
( ' ) 'H x x x x

−= . 

7.1.9   Similarly, the  vector  of  the  residuals  can  be  expressed  as  follows  ( )e I H Y
− −

= − . 

The  variance-covariance  matrix  of   the  residual  is   
2 2
( ) ( )e I Hσ σ

− −
= −   which   is 

estimated  by   
2
( ) ( )e MSE I Hσ

−−
= −   . 

7.2.0  FOURIER   SERIES 

7.2.1  Definition ,A  trigonometric  polynomial  is  a  finite  sum  of  the  form   

1

( ) ( cos sin )....( )
N

o n n

n

f x a a nx b nx a
=

= + +∑    where   ,......, ,
o N

a a           are  complex  numbers  . 

Equation  (a)  can  be  written   as    ( )
N

inx

n

N

f x c e
−

=∑     ( )x real− .Every  trigonometric  polynomial is   

periodic  with   period  2π .If  n   is  a  non  zero   integer  ,
inxe   is  the  derivative  of  

inxe

in
,  which  also  has  a 

  period  2π .  Hence   
1( .. 0)1

0( .. 1, 2....)2

inx
if n

e dx
if n

π

ππ −

=
= 

= ± ±
∫ .  sin x    and   cos x   satisfy  ''( ) ( ) 0f x f x+ = ,   
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 in   general   
2

'( ) ( ) 0f x f xω+ =   is   satisfied   by   sin xω    and   cos xω . 

7.2.2  sin x   is  an  odd   function   and  cos x   is  even   ( )f x   is  said  to  be  odd   if    

        ( ) ( )f x f x− = −   and  even  if  ( ) ( )f x f x− = . 

     e.g    sin( ) 1 sin( ).....
2 2

odd
π π−

= − = −     cos( ) 1 cos ....evenπ π− = = . 

7.2.3 
sin( ) sin( )

sin cos
2

α β α β
α β

+ + −
=          

cos( ) cos( )
cos cos

2

α β α β
α β

+ + −
=  

cos( ) cos( )
sin sin

2

α β α β
α β

− − +
=  

7.2.4  Then  if  m   and   n   are  non-negative   integers  then 

(i)     
1

sin cos [sin( ) sin( ) ]
2

mx nxdx m n x m n x dx

π π

π π− −

= + + −∫ ∫  

 
1 1

sin( ) sin( ) 0
2 2

m n xdx m n xdx

π π

π π− −

= + + − =∫ ∫
 

 Following  the  same  arguments 

0; ...
sin sin

; ... 0

if m n
mx nxdx

if m n

π

π π−

≠
= 

= >
∫         (iii)

  

0; ...

cos cos ; ... 0

2 ; ... 0

if m n

mx nxdx if m n

if m n

π

π

π

π−

≠


= >
 = =

∫   

(i),(ii)   and  (iii)  are  called  the  orthogonal   formula. 

7.2.5   Remark 

 Suppose   the  series 

1

( cos sin )
2

o
n n

n

a
a nx b nx

∞

=

+ +∑    converges  then  it’s  sum  will  be  a  function   of  x  

i.e   

1

( ) ( cos sin )
2

o
n n

n

a
f x a nx b nx

∞

=

= + +∑  
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Suppose  the  convergence  is  uniform,  then  we  can  integrate  term  by  term 

1

( ) [ 1.cos 1.sin
2

o
n n

n

a
f x dx dx a nxdx b nxdx

π π π π

π π π π

∞

=− − − −

= + +∑∫ ∫ ∫ ∫ .   

For   k=0.  multiply  by  cos kx  

1

( )cos cos [ 1.cos 1.sin
2

o
n n

n

a
f x kxdx kxdx a nxdx b nxdx

π π π

π π π

∞

=− − −

= + +∑∫ ∫ ∫ ∫  

                                cos
2

oa
kxdx

π

π−

= ∫ o
aπ=    i.e    

1
( )oa f x dx

π

ππ −

= ∫    

For   1k ≥   ,multiply   by  cos kx  

( )cos cos [ cos cos sin cos ]
2

o
n n

a
f x kxdx kxdx a nx kxdx b x kxdx

π π π π

π π π π− − − −

= + +∑∫ ∫ ∫ ∫  

                                cos cos cos
2

o
n

a
kxdx a nx kxdx

π π

π π− −

= +∑∫ ∫  

                                 n na dx a

π

π

π π
−

= =∫     when   0n k− >    Thus    
1

( )cosna f x nxdx

π

ππ −

= ∫  

Similarly    ( ) [ cos sin ]
2

o
o n

a
f x dx a nxdx b nxdx

π π π π

π π π π− − − −

= + +∑∫ ∫ ∫ ∫  

Multiply  by   sin kx   for  1k >  

( )sin sin [ cos sin sin sin
2

o
n n

a
f x kxdx kxdx a nx kxdx b nx kxdx

π π π π

π π π π− − − −

= + +∑∫ ∫ ∫ ∫    where   k n=  

                              sin sin sin sinn na nx kx b nx kxdx

π π

π π− −

= +∫ ∫  

( )sin nf x kxdx b

π

π

π
−

=∫
         

1
( )sinnb f x kxdx

π

ππ −

= ∫
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7.2.6   Example  1 

Compute   the  F   series  of      ( )f x x=    when  xπ π− ≤ ≤  

Solution 

(i)  

21 1
| 0

2
o

x
a xdx

π
π

π
ππ π −

−

= = =∫  

(ii)   
1

cos 0na x nxdx

π

ππ −

= =∫   (since  cosx x   is  odd  function) 

(iii) 
1

sinnb x nxdx

π

ππ −

= ∫     where  sinx x    is  even 

                     

0

2
sinx nxdx

π

π
= ∫    

1

0

0

2 1 2( 1)
cos | cos

n

x nx nxdx
n n n

π
π

π π

+−
= − + =∫

 

7.2.7   Example 2 

Compute  the F  series  of  f  defined  by    
0; .. 0

( )
1; ..0

if x
f x

if x

π

π

− ≤ <
= 

≤ ≤
 

Solution 

1
( )oa f x dx

π

ππ −

= ∫    divides  the  integral  to corresponds  with the intervals 

     

0

1
( ) ( )f x dx f x dx

π π

π π−

= +∫ ∫   
1

. 1π
π

= =   For   1n ≥    
1

( )cosna f x nxdx

π

ππ −

= ∫  

      

0

0

1 1
( )cos ( )cosf x nxdx f x nxdx

π

ππ π
= +∫ ∫

0

1
cos 0nxdx

π

π
= =∫   

 
1 1

(cos cos0) (( 1) 1)nn
n n

π
π π

− −
− = − −

 

                                    
  

0; .. .. ..

2
; .. .. ..

if n is even

if n is odd
nπ




= 


Thus   
1

1 2 (2 1)
( ) sin

2 2 1n

k x
f n

kπ

∞

=

+
= +

+∑
 

 



 

 

 

 

7.3.0   TIME  SERIES

 7.3.1  Definition; Time series  is    a  s

A time series  can  be  expressed as a

periods,  amplitude .This  properties 

behavior  in a time series. Examples

 (i).The prices  of  stocks and shares t

(ii)The temperature reading  taken at

 (iv)The values of brain activity measu

7.3.2  Example   ;Picture  of FTSE 100
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  a  set   of  data  collected  over time 

 as a  combination  of  cosine  (or  sine)  waves   with diffe

ties  can  be  utilized  to  examine  the  periodic (cyclical) 

les 

res taken at regular intervals of  time. 

n at regular interval in season at a place. 

easured every 2 seconds for 256 seconds 

 100 share idex against time 

differing 

al)  
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7.3.3  Methods  for  time  series  analysis  may  be  divided  into  two classes   

      (i)Frequency-domain   methods;-which   spectral   analysis  and  wavelets  analysis   

      (ii)And   time-domain   methods;-which  includes  auto-correlation   and cross-correlation  analysis. 

7.3.4   Objectives  Of  Time  Series Analysis 

(i)Provide  experiment  and  historic  data.it  may consist of  graphical  representation or  a  

  few  summary  statistic. 

(ii)Monitoring  of  a  time  series  to  detect  changes   in  behavior  as they  occur. 

(iii)To  fore-cast  future  values   of  a  series. 

(iv)Analysis  of  accommodate  dependence  in series  and  help  in  making  inferences  on  parameters. 

(v)Development  of  models  with a view  of  understanding  underlying  mechanisms   which  generate 

      the  data. 

7.4.0  Methods  Of  Analysis. 

7.4.1  Time  plot;-are  pattern  of plotted points or   graphs of  when the  plotted and  joined   by straight lines. 

7.4.2   Minimizing  Randomness(Smoothing) 

The  process  involves  decomposing of  independent  variables  
t

y   to  trend  estimate  
t

s   and  randomness  
t

r   

i.e  
t t ty y e

∧

= +  such  that   using  simple  linear  regression  model   ( ) ( )
t

Y t u tµ= +   

implies  that  y
∧

  is  the  estimate  of  the  trend  tµ . 

Ways  of  achieving  stationary  includes;-   Moving averages, fitting  polynomial  regression, and  spline 

regression. 

7.4.3   (I)Moving  Averages 

A   simple  moving  average  is  of  the  form   
1 1

( )

3

t t t
t

y y y
y
∧

− ++ +
=

 

and  generally   

p

t j t j

p

y w y
∧

+
−

=∑     ; 1,..........,t p n p= + −   where every increase  

 

positive integer  p  removes  seasonal  fluctuations  but highlight  more long-term  trends. 
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7.4.4   Polynomial  Regression

 

This  is  the  matrix  regression  method  ,where a polynomial  represented  by   Y xb
∧

− −
=


  with  residual  terms  

 by  e y y y xb
− ∧ −

−
= − = −


.The  vectors  of  the  fitted  values  Y

∧

 can  be  expressed  in  terms  of  the   

matrix  H
−

   as  follows    Y H Y
∧

−
=     where   

1
( ' ) 'H x x x x

−=
……(i)

   such  that the  polynomial  is  of  the  form   

0

p

t

j

Y H Y
∧

−
=

=∑    and  for  large  p,   the  values   of  Y
−

 can  be  adjusted  to  Y Y Y
−

−
= − . 

where 1

n

i

i

Y Y

n

−

=

=∑
 .A  further  refinement can be  done by replacing  Y

−
  by  orthogonal   

polynomials       
1

( ).. sin cos [sin( ) sin( ) ]
2

a mx nxdx m n x m n x dx

π π

π π− −

= + + −∫ ∫  

          
1 1

sin( ) sin( ) 0
2 2

m n xdx m n xdx

π π

π π− −

= + + − =∫ ∫
 

       (b)
0; ...

sin sin
1; ... 0

if m n
mx nxdx

if m n

π

π−

≠
= 

= >
∫     or   (c) 

0; ...

cos cos ; ... 0

2 ; ... 0

if m n

mx nxdx if m n

if m n

π

π

π
π−

≠


= = >
 = =

∫   

where  m   and   n   are  non-negative   integers   and  the  matrix   ( ' )X X  in  equation  (i) 

is   diagonal. 

7.4.5   Spline  Regression   is  a  method  of  weighted  moving  averages applied to   gain 

stationary   which copes  with  arbitrary  patterns  of  missing  values  in  the  data. 

Equation    { } { }2
"

1

( ) ( ) ( )
n

i i

i

Q y t t dtα µ α µ
∞

= −∞

= − +∑ ∫ .     if  α  is close to zero, we  tolerate  a lot 

of  roughness   in  tµ  to  fit  the  data.  if  α  is  large  we  get  smooth  ( )tµ  and allow less  close  fit 

 

 



 

 

 

 

7.5.0  Auto  Correlation  ,Sometimes

 
h

r versus  h  the   time  lag. It  is  a m

The  variance-covariance  matrix  σ

where  
2 2 1
( ) ( ' )b x xσ σ −

−
=   implyin

( )Y t   is   cov( , )
h i j h

c b b −=   and   s

0

h
h

c
c

γ = . The resulting   values  of

variables  0
h

r = .( 1+  ) implies   the

interval  are  similar. whilst  ( 1)−  sh

 

Equivalently , if  we consider  a  ran

stationary  in the  range    1 α− < <

83 

es  known  as  a  correlograms    is   a  plot  of  the  samp

  a measure  of  internal  correlation  within  a time  serie

2 2 2

1 1

2 2 2

1 1 1 12

2 2

1 1

( ) ( ) .... ( ,

( , ) ( ) .... ( ,
( )

: : : :

( ) ... ... ( )

o o o p

o p

p o p

b b b b b

b b b b b
b

b b b

σ σ σ
σ σ σ

σ

σ σ

−

−

− −



=




plying   that   the  auto covariance  function  o f  a  station

d   since  (0)c   is  the  variance  of  
t

Y , the auto correlat

s  of  
h

r   will  be  between   1−  and  1+   i.e  | ( ) | 1r k ≤

  there is  a  strong  and positive  association  i.e  the  serie

shows   strong  negative  association(dissimilar) observa

 random sequence  { }tY    defined  by  1t t tY Y Zα −= + …

1<     .  Taking  expectations   of  both  sides  of   eqn  (c

ample   autocorrelations   

eries. 

1

1

)

)

)

−

−








   

tionary  random function  

ation  function  becomes    

1≤   and  for  independent   

series values  in  two  time 

ervation.  

t ……..(c) ,  { }tY  is  

n  (c)  and  giventhat  



 

 

 

 

( ) 0tE Z =   ,we deduce  that  µ =

expectations  and  dividing by  Var

...; 0,1...k

k kρ α= =   then  we  pro

 

7.5.1  Estimating   The  Autocorrelatio

For  a  series  { , 1,......., }
t

Y t n=   we

  coefficient     1

( )(
n

t

t k
k

y y y

g
n

= +

−
=
∑

plot   of  k
γ   against  K   is  called a  c

dashed  horizontal  lines   represe

 of  departure  from  randomness
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αµ=   therefore  0µ = .  Now  multipliying  both sides

( )
t

ar Y    gives   1k k
ρ αρ −= .  Finally , 1

o
ρ =    gives  the 

  proceed to plot  kρ  against  k          

lation  Function   For  Equally  Spaced  Series(Correlogram

we  use  y
−

(
i

y

n
=
∑

   and  define  the  
th

k   sample  au

)( )t ky y

−
−

− −
Then  the  

th
k  sample autocorrelation  coef

 a  correlogram  of  that  data  { }
t

y Each  correlogram  

resenting  the limits 2
n

± , which  are  used for  inf

ess    

ides  by  t kY − taking  

the  solution  

grams) 

auto covariance  

coefficient  is   
k

k

o

g

g
γ = ,A  

am  includes  a  pair  of  

r  informal  assessment  
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7.6.0  Wavelet;-  Analysis  is  the   analysis  of  the  dominant  frequencies  in  a time  series 

7.6.1  Introduction   ;For the cosine function    
1

2cos(2 0.6 )
50

tX tπ π= +     for   1,2,.........,500t = . 

In  addition  normally  distributed  errors  with mean  0   and  variance  1 

P=50           
1

50
ω =   ,   Thus  it  takes  50  times(

1

50
ω = )   to  cycle  through the  cosine 

function , before   errors  are  added.  The maximum  and the minimum values   are  +2  and  -2 

 

    +2                                                           

 

 -2                                                          

            0                   100         200         300           400           500 

If  we  change  period  to  250    and  
1

0.004
250

ω = =    

  then    
1

2cos(2 0.6 )
250

tX tπ π= +    for   1,500t =  

             +2  

 

 

 

           -2 

                              0          100          200           300       400         500 
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If  the  regression  models  becomes 
 
take s  a cyclic  shape      

where   is  the  randomness,  the  frequency  and    parameters  estimated  by 

 least  square 
  
i.e  and  Suppose  that  we  have  observed at  n  distinct  time points  and  

for  conviniences,we  assume 

that n  is  even.our  goal   is to  identify  important   frequencies   in the  data.To   pur sue  the 

investigation,we  consider  the set of  possible frequencies  j

j

n
ω =   for  1,2,....,

2

n
j =   ,This  are 

called the  the  harmonic  frequencies.We  will represent  the  time  series  as 

  
2

1 2

1

[ ( )cos 2 ( ) ( )sin(2 ( )

n

t j j

j

j j
x t t

n n
β π ω β π ω

=

= +∑ .This  is  a  sum  of  sine  and  cosine  functions 

at  the  harmonic  frequencies.Think  of  the  1( )
j

n
β   and  2( )

j

n
β   as  the  regression  parameters. 

Then  there  are  a total  of   n parameters  because  we let   j   move  from  1  to  
2

n
.   This  means  that  

we  have  n  data   points  and  n  parameters. So  the  fit  of  regressin  model will  be  exact.The  first  

step  in the  creation  of  the  periodogram  is  the  estimation  of  the  1( )
j

n
β   and  2( )

j

n
β   parameters 

It actually not  necessary to carry out  regression ( ) to  estimate  this  parameters   

because  Instead  a  mathematics device called the Fast  Fourier  Transform (FFT)  is  used.
                     

After the parameters  have  been  estimated  we  define  

2 2

1 2( ) ( ) ( )
j j j

p
n n n

β β
∧ ∧

= +  .This  is  the   sum  of   

squared  “regression”  coefficients   at  the  frequencies  
j

n
 

 

 

 

1

cos( ) sin( ) ....( )
m

t t

k

y t t e iiα ω β ω
=

= + +∑

tz 2
p

πω = ( , )θ α β=

1( ' )X X XYθ −=

1( ' )X X XYθ −=
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7.6.2 Interpretation  And  Use   

A relatively  large  value of  ( )
j

p
n

  indicates  relatively  more  importance  for  the  frequency  
j

n
 

(or  near  
j

n
)  in  explaining  the  oscillation  in  the  observed  series  ( )

j
p

n
  is proportional   to 

the  squared  correlation  between  the  observed  series  and  cosine  wave  with  frequencies  
j

n
. 

The  dorminant  frequencies  might  be  used  to  fit  cosine( or  sine) wave  to  the  data  or  might 

be   used  simply  to  describe  the  important  periodicities in  the  series. 

 

 

7.6.3  Equivalently  from  Fourier   the  series  we   

where        and    

  

thus  we  can  write  
 

 parameters   as          and   

       

It  can  be  

 shown  that  the  Fourier  series  of    with    and  n  is  odd  take  initial             

  where   is  the  sample  mean   Similarly  for the even  n, the  Fourier  series   

  is    . 

 

Equation  (ii)  show  we  can  achieve  an orthogonal  partitioning of more  variations  by   

increasing    and  since    and  associated  sum  of  squares   is  

1

( cos sin )
2

o
n n

n

a
a nx b nx

∞

=

+ +∑

1
( )cosna f x nxdx

π

ππ −

= ∫
1

( )sinnb f x kxdx

π

ππ −

= ∫

1

2 cos( )
n

t

t

y t

n

ω
α =

 
 
 =
∑

1

2 sin( )
n

t

t

y t

n

ω
β =

 
 
 =
∑

( )f x 0ω = t ty eα= +

1,........t n= α yα
−

=

( )f x x= ( 1)t t

ty eα= − + 1,......,t n=

m

( 1)t

t
y

n
α

 
−  

=  
 
  

∑
2α



 

 

 

 

If    

 of  the  total  variation  in  the  series

The  graph  of    against   is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The  figure  show  the  spectral  an

largest  peak  occurs  at  the  frequ

a large  peak  corresponding  to  a

per  two  years   

2

1

cos( )

( )

n

t

t

y t

I

ω

ω
=

  
  
  =
∑

( )I ω ω

88 

  where   and   th

eries    is 

is called   periodo gram. 

l  analysis  from  the  first of  london measles time  s

frequency  of   0.5  cycles/year  of  biennial  oscillatio

to  annual  oscillation  and also a slightly  smaller one

2

1

sin( )
n

t

t

y t

n

ω
=

 
 

  
∑

0 ω π≤ ≤

{ }ty 2

1 1

2
(0) 2 ( ) ( )

n m

t

t j

j
y I I I

n
π π

= =

= + +∑ ∑

d   the partitioning 

     ,  

e  series.The   

lation. There  is  also 

 one  at  three cycles   

)
2

nj <
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7.6.4 The  Connection  Between  The  Correlogram   And  The  Period gram 

Though   the  two  have  different  rationales .The  presented  arguments  ,show  a  connection 

between them  .For  Fourier  frequency  ω , we  can  write 

 

2 2

1 1

cos( ) sin( )

( )

n n

t t

t t

y t y t

I
n

ω ω

ω
= =

    
+    

     =

∑ ∑
2 2

1 1

( cos( ) ( )sin( )
n n

t t

t t

y y t y y t

n

ω ω
− −

= =

    
− + −    

     =

∑ ∑
  

Since   

1 1

cos( ) sin( ) 0
n n

t t

t tω ω
= =

= =∑ ∑ . Expanding  each  squared  term  gives 

{ } { }2 2 2
( ) ( ) cos ( ) sin ( ) ( )( ) cos( )cos( ) sin( )sin( )t t s

s t

nI y y wt t y y y y t s t sω ω ω ω ω ω
− − −

≠

= − + + − − +∑ ∑∑

 

1
2

1 1

( ) 2 ( )( )cos( )
n n

t t t k

k t k

y y y y y y kω
−− − −

−
= = +

= − + − −∑ ∑∑    

Now substituting  the  sample  auto covariance  coefficients  we  obtain 

  

1

1

( )
2 cos( )

n

o k

ko

I
g g k

g

ω
ω

−

=

= + ∑     express   Fourier   transform  as  a  sample  of  auto covariance 

Finally   dividing  by  og   defines  normalized   period gram 

1

1

( )
1 2 cos( )

n

k

ko

I
k

g

ω
γ ω

−

=

= + ∑   as  the  Fourier  transform  of  the  correlogram 

7.7.0 The  Spectrum  Of  A   Stationary  Random   Process.  

Consider   a   stationary  random    sequence  cov( , )t t t kY Yγ −=    .The  corresponding  auto covariance  

generating   function  is   ( ) ...(4)
k

k

k

G Z zγ
∞

=−∞

= ∑ whose  arguments   z ,is  a  complex  variable .If  in  equation  

(4).  we   now  choose  
iw

z e
−= where  ω   is thereal  variable ,we  obtain  the  spectrum   of  { }tY

 ,

( ) ( ) .......(5)
i ik

k

k

f G e e
ω ωω γ

∞
− −

=−∞

= = ∑   because    k kγ γ −=     and  2cosi i
e e

ω ω ω−+ = we  can  write  

equation   (5)   as 0

1

( ) 2 cos( )k

k

f kω γ γ ω
∞

=

= + ∑  , 
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revealing  that  spectrum  isa  real-valued  function. If   
2σ   denotes  the  variance  of  tY .

 

we  can  similarly  define   a  normalized  spectrum   
2

1

( )
*( ) 1 2 cos( )k

k

f
f k

ω
ω ρ ω

σ

∞

=

= = + ∑  

 Note;  The  normalized  spectrum  bears  the  same  relationship  to  the  autocorrelation 

function  as  does  the  spectrum  to  the  auto covariance   and any  non-negative  valued  function  ( )f ω  

on  ( (0, )π  defines  a legitimate  spectrum. 

7.7.1  Example 

A  first – order  autoregressive  process.  Suppose   that  { }tY   is   defined    by 1t t tY Y Zα −= +    where   { }tZ    

is  a  randomized   sequence   and  1 1α− < <    we have already  seen  that  the autocorrelation   function  { }tY  is   

; 0,1,.......,k

k kρ α= = Thus  the normalized  spectrum   of  { }tY   is   *( )
ik

k

k

f e
ωω ρ

∞
−

=−∞

= ∑ It  can  be  shown  

that    { } 1
2 2*( ) (1 ) 1 2 cos( ) .......(6)f ω α α ω α

−
= − − + Normalized   spectrum  for  each  of  0.5,0.5α = −   

and  0.9      Note   For negative   , *( )fα ω   is  an  increasing  function   of  ω
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7.7.3     Discrete   And  Continuous  Spectrum 

Spectrum   plots  gives  information  about  how  power (or  variance)  in  a series   

is  distributed  according  to  frequencies.For  auto covariance   { }cov ,h t t hc Y Y −=   and  auto covariance   

function  is
h

h

h

c z
∞

=−∞
∑ and   since  

h hc c−=    and  2cos( )i ie eω ω ω−+ =   we  write   a   spectrum  real    

valued  

1

( ) 2 cos( )o k

h

f c hω γ ω
∞

=

= + ∑ Conversion  of  time-indexed  data into estimates  of autocorrelation  

or  spectrum  depends  partly  on  Fourier  transformation of ( )c τ  to obtain  ( )F A .If  Continuous  component is  

missing   i.e  ( )f λ =0  for  all   λ . the time  spectrum  is said to have  a  discrete  spectrum  (point  spectrum). 

 ( ) ( )
i k

k

k

C e p
λ ττ λ

∞

=−∞

= ∑     moreover  ( ) (0)k

k

p Cλ
∞

=−∞

= < ∞∑  

Thus  since  summable  series  are  square  summable  
2
( )k

k

p λ
∞

=−∞

< ∞∑ .  It  follows  that  the  

spectrum  function  can  be  obtained  from  auto covariance   by the  expression  

1
( ) lim ( )

2
k

T

i

k
t

T

p C e d
λ τλ τ τ−

→∞
−

= ∫    ,expression  yields  ( )p λ  for  all   λ   and  ( )dF A   can be  

obtained.  For continuous  spectrum   ( ) ( )i
C e f d

λττ λ λ
∞

−∞

= ∫   is  valid  and ( ) (0)f d Cλ λ
∞

−∞

= < ∞∫  

The  auto covariance  and  spectrum  of  an  almost  periodic  function 

Let  
i t

j

j

Xt C e
λ

∞

=−∞

= ∑    be  an  almost  periodic  function  with 
2| |j

j

C
∞

=−∞

< ∞∑
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                                                                                                                                           ( )f λ  

 

 ( )p λ  

  

 

        (0)C  ( )F λ  

 

 

                               3λ−           2λ−      1λ−  0 0λ =  3λ  

  

 

7.7.4  Univariate  Spectral  Models 

Using  the properties  of  inner product   and  orthonormality   of  functions    
i it

e
λ

.  We  

can  calculate  the  auto covariance  functions  for  time series 

( ) ( ), ( )C x t x tτ τ=< + > = ,j j k
i i t i

j k

j k

c e e c e
λ τ λ λ τ

∞ ∞

=−∞ =−∞

< >∑ ∑
 

                                           = ,j j k
i k i t i t

j k

j k

c c e e e
λ λ λ

∞ ∞ −

=−∞ =−∞

< >∑ ∑   =
2| | ji t

j

j

c e
λ

∞

=−∞
∑  

                           

2| | .... ... ... 0, 1,....
( )

0;....

j j
c for j

P
otherwise

λ λ
λ

 = = ±
⇒ = 


   and       

2(0) | |j

j

C c
∞

=−∞

= ∑
  

In  practice  spectral   analysis  imposes   smoothing  techniques  on  the  period gram  with   certain 

assumptions .We  can  also  create  confidence  interval  to  estimate  the  peak frequency  regions. 

Spectral  analysis  can  also  be  used  to  examine  the  association  between  two  different  time  series.  
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RECOMMEDATION 

To show further application of lebesgue integration in 

           (i)
n

R -spaces and  stokes and green theorems. 

           (ii) Statistical methods such discrete  

                and  continuous solutions of expectations 

            (iii)In  Time  Series Analysis   Solutions 
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CONCLUSION 

This study describes the Extensions of Riemann theory of integrations, first to Riemann 

 

  Stieltjes integration, then to the most notable extensions,  ’The  Lebesgue Theory Of Integration. 

 

As a result we are able to solve the discontinuous functions, such as step-functions, recover f(t) from  

 

F’(t),and calculate areas covered by continuous functions with increased limits  e.g  R
n
  spaces.  
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