Show simple item record

dc.contributor.authorNgaruiya, Mary N
dc.date.accessioned2014-12-04T09:52:20Z
dc.date.available2014-12-04T09:52:20Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/11295/76376
dc.description.abstractProstate cancer has been on the rise in the past years and alarming cases being found in men in their 20’s. The problem is that most of the cases are diagnosed in their late stages thus the mortality rate being high. In recent years data driven analytic studies have become a common complement with new and novel research where different tools and algorithms are taking a centre stage in cancer research. In this research, the main goal is to use datamining to derive patterns which will be used in building a prognostic tool that helps in identification of the Gleason score once screened and advice on the treatment technique. In this research, we used two popular data mining tools (R Environment and WEKA) which exhibited almost same results .The dataset contained around 485 records and 7 variables. In WEKA, a 10-fold cross-validation was used in model building in comparing ANN and J48. The results showed that ANN is the most accurate predictor compared to J48 in all the instances. This study contributes to society, academics and cancer research which ultimately assist in reduction of mortality rates by use of pattern recognitions which leads in better decision making.en_US
dc.language.isoenen_US
dc.publisherUniversity of Nairobien_US
dc.subjectArtificial Neural Network, Data Mining, GIS, prostate cancer, J48 (decision trees), R, WEKAen_US
dc.titleUse of data mining to check the prevalence of prostate cancer: case of Nairobi countyen_US
dc.typeThesisen_US
dc.type.materialen_USen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record