1. Why Instrumentation and Control?

• There are many reasons for instrumentation and control in a seed processing plant.

• These include:-
• To ensure safety of workers, visitors neighbours and passers-by
• Safety of equipment, machines, buildings and other structures
• Efficient use of utilities such as steam, water and electricity
• Increase productivity of machines
• Increase product quality regularity
• Increase flexibility of machines and processes
• Meet regulatory requirements such as consistent package weights within specifications
• In seed processing plants, the boiler is often fired by maize cobs.
• The on-off control described above is therefore not easy to implement.
• The minimum steam pressure is assured by maintaining adequate fire.
• A safety value that releases steam to the atmosphere ensures that the maximum allowable pressure is not exceeded.
• In all cases a steam pressure gauge is installed.
(ii) Boiler water level

• The boiler tubes must always be covered with water to avoid overheating that leads to material failure and release of steam in the working environment.

• Two measures are taken:

 1. An automatic control system measures the water level and switches the water feed pump on when it is at the specified minimum value.
 2. A sight glass gauge is installed to enable the boiler operator to monitor the water level and to intervene when necessary.
3. Control of in-bin aeration

- The main objective of aeration is to maintain seed stored at 12-15% moisture content to within 3-6°C of ambient temperature.
- An aeration controller decides if, when, and for how long air blowing is needed.
- Sophisticated aeration controllers measure the temperature and relative humidity of the ambient air and the temperature and equilibrium relative humidity of the grain.
- Less sophisticated aeration controllers base their decisions solely on the air and grain temperature.
• Fan control is also important to ensure that it stops operating when the seed moisture content reaches a specified minimum value and starts operating when it reaches a specified maximum value.
• In direct heating systems, a mixing valve connects the hot and cold channels and controls the drying air temperature.
• The required drying conditions (T and RH) can be programmed based on the desired equilibrium moisture of the seed.
• The air flow is dynamic: higher at the beginning of the process and lower at the end of the process as the seed gets drier.
• Relative humidity of the incoming air is compared with that of the exhaust air. The drying process stops when the former is higher than the latter.
• Measuring and parameter settings are read out on a control screen and PC.
• Graphics are used to visualize the drying process.
4. Control of in-bin supplemental heat drying

- The objective of in-bin supplemental heat drier controllers is to dry seed grain at minimum energy use without significantly affecting the storability and quality.

- Control of drying air temperature is important to ensure that the drying is effective and seed quality is maintained.

- An automatic control system measures the drying air temperature and adjusts the steam flowrate to maintain it at the desired value.
5. Control of Seed cleaning and treatment

• The seed feed rate is determined by the speed of the bucket elevators which can be controlled if variable speed drives are used.

• Control of air flow rate in the aspiration cleaner is important to ensure that the impurities are adequately removed without blowing away the good seed.

• Control of dosing of the treatment chemicals is important to ensure that good seed quality is achieved without excessive use of chemicals.
6. Control of seed packaging

- Instrumentation and control enables the selection of throughput and packaging size and maintenance of package weights consistently within specifications.
THANK YOU

SEMI's UoN
Seed Enterprises Management Institute
University of Nairobi