STUDIES ON RHABDITIS SPECIES ASSOCIATED WITH
BOVINE PARASITIC OTITIS

BY
MATHIAS MWANGINGA TIKATIKA MATANDALA

A thesis submitted in partial fulfillment for the
degree of Master of Science in Veterinary
Pathology and Microbiology of the University
of Nairobi.

Department of Veterinary Pathology and Microbiology
Faculty of Veterinary Medicine
University of Nairobi.

1992
DECLARATION

This is my original work and has not been submitted for a degree at any other University or Institution.

M. M. T. Matandala

This work has been submitted to the University of Nairobi for examination with our approval as University supervisors.

Prof. G. M. Mugera
Department of Pathology and Microbiology
Faculty of Veterinary Medicine
P.O Box 29053
Nairobi, Kenya

Dr T. A. Ngatia
Department of Pathology and Microbiology
P. O. Box 29053
Nairobi, Kenya
DEDICATION

This work is dedicated to my mother Msemwa Senguga.

To Ms. E. L. Tyada for her valuable advice, encouragement, cooperation and suggestions all through the course of this study and in the thesis examination.

My sincere appreciation and thanks are due to the Gambia Agricultural Research Services (GARS) for funding my studies at the University of Bethesda and this work. I wish also extend my gratitude to Drs. A. O. Ocampo (UGA, Bogota) and S. C. Acien (IITA) for their assistance in the while completing my thesis work in their respective divisions. A note of thanks is also extended to the field staff in another Extension and Marketing division for their support during this field work.

The hearty congratulations and voices for articles received by Prof. J. H. Apure of the University of Bethesda, are highly acknowledged. I am also grateful to the members of technical staff of the Department of Agriculture and Marketing for their assistance and for laboratory and experimental checks.

Finally, I thank my wife Lusakira, my conocer Philip and my son Roland for their support, prayers and understanding encouragement.
I am deeply indebted to my supervisors Professor G.M Mugera and Dr. T. A. Ngatia for their invaluable close supervision, encouragement, cooperation and suggestions all through the course of this study and in the thesis preparation.

My sincere appreciation and thanks are due to the German Academic Exchange Services (DAAD) for funding my studies at the University of Nairobi and this work. I wish to extend my gratitude to Drs O.N. Ouma (DVO, Kajiado) and G.K. Njihia (DVO, Murang’a) for their assistance to me while carrying out my field work in their respective districts. A vote of thanks is also extended to the field staffs in Central Kajiado and Makuyu divisions for their support during the field work.

The support, encouragement and constructive criticism rendered by Dr. J. M. Ayuya of the University of Nairobi, are highly acknowledged. I am also grateful to the members of technical staff to the Department of Pathology and Microbiology for their assistance during my laboratory and experimental studies.

Finally I thank my wife Laurencia, my daughter Betty and my son Patrick for their support, prayers and inexhaustible encouragement.
TABLE OF CONTENTS

DECLARATION i
DEDICATION ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF APPENDICES xii
ABSTRACT xiii

1. INTRODUCTION 1

2. LITERATURE REVIEW
 2.1 Occurrence and distribution 5
 2.2 Etiology 6
 2.3 Epidemiology 21
 2.4 Pathogenesis 24
 2.5 Clinical Signs 25
 2.6 Pathology 27
 2.7 Diagnosis 28
 2.8 Treatment 28
 2.9 Control 29

3. MATERIALS AND METHODS
 3.1 Field Study
 3.1.1 Areas of study
 3.1.1.1 Kajiado District 30
 3.1.1.2 Murang’a District 31
3.1.2 Point prevalence

3.1.3 Identification of nematode species associated with infection

3.1.4 Assessment of the role played by dips as reservoirs of the nematodes

3.1.4.1 Identification of nematode species supported by dips in the areas of study

3.1.4.2 Survival rates of the nematodes in different acariades used in the areas of study

3.2 Experimental study

3.2.1 Experimental animals

3.2.2 Determination of ear bacterial flora

3.2.3 Nematode preparation

3.2.3.1 *Rhabditis blumi*

3.2.3.2 *Rhabditis bovis*

3.2.3.3 Harvesting of the worms

3.2.4 Infecting protocol

3.2.5 Clinical examination

3.2.6 Pathology examination

4. RESULTS

4.1 Field study

4.1.1 Point prevalence

4.1.2 Nematode spp associated with the infection
4.1.3 Assessment of the role played by dips as reservoirs of the nematode

4.1.3.1 Nematode spp supported by dips in the areas of study

4.1.3.2 Survival rates of the nematodes in the different acaricides used in the areas

4.2 Experimental study

4.2.1 Clinical response to the infection

4.2.1.1 Group 1. Animals infected with *Rh. bovis*

4.2.1.2 Group 2. Animals infected with *Rh. blumi*

4.2.1.3 Group 3. Control animals

4.2.2 Gross pathology

4.2.2.1 Group 1. Animals infected with *Rh. bovis*

4.2.2.2 Group 2. Animals infected with *Rh. blumi*

4.2.2.3 Group 3. Control animals

4.2.3 Histopathology

4.2.3.1 Group 1. Animals infected with *Rh. bovis*

4.2.3.2 Group 2. Animals infected with *Rh. blumi*

4.2.3.3 Group 3. Control animals
4.2.4 Bacterial isolation 61

5. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 71
 5.1 Discussion 71
 5.2 Conclusion 82
 5.3 Recommendations 83

6. REFERENCES 85

7. APPENDICES 91
LIST OF FIGURES

Figure 1. Rhabditis bovis anterior end. 11
Fig. 2. Rhabditis bovis Posterior 12
Fig. 3. Rhabditis bovis female reproductive structures 13
Fig. 4. Rhabditis blumi anterior end 14
Fig. 5. Rhabditis blumi posterior end 15
Fig. 6. Rhabditis blumi female reproductive structures 16
Fig. 7. Rhabditis freitas, male, female reproductive structures 17
Fig. 8. Rhabditis freitas posterior end 18
Fig. 9. Rhabditis costai male, female and anterior end 19
Fig. 10. Rhabditis costai posterior end 20
Fig. 11. Left ear of animal B2 showing discharges in the conchal and tragus region 54
Fig. 12. Left ear of animal B3 showing discharges blocking the entrance to the ear canal 54
Fig. 13. Right ear of animal B2 showing bloody discharge soiling the pinna, ear base and the cheek 55
Fig. 14. Left ear of animal B3 showing discharge draining through the tragus to soil the ear base 55
Fig. 15 Right ear of animal B1 showing discharge in the conchal region and blocking the ear canal 56

Fig. 16 Animal B2 with bilateral otitis is emaciated and droopy ears 56

Fig. 17 Cartilaginous part of the left ear canal of animal B2 showing a thickened epidermis 63

Fig. 18 Osseous part of the right ear canal of animal B1 showing an area in the thickened epithelium 63

Fig. 19 Osseous part of the right ear canal of animal B1 showing an area in the thickened epithelium infiltrated with inflammatory cells, mainly neutrophils 64

Fig. 20 Osseous part of the right ear canal of animal B1 showing the papillary layer of the dermis infiltrated with eosinophil, plasma cells, lymphocytes and macrophages 64

Fig. 21 Junction of the cartilaginous and the osseous part of the left ear canal of animal B1 showing extensively eroded epithelium and cellular infiltrated dermis 65

Fig. 22 Osseous part of the left ear canal of animal B1 showing a desquamated epithelium and cellular infiltrated dermis at higher magnification 65
Fig. 23. Osseous part of the right ear canal of animal B2 showing cellular infiltrated dermis under intact epithelium

Fig. 24. Osseous part of the left ear canal of animal B3 showing a desquamated epithelium and cellular infiltrated dermis

Fig. 25. Osseous part of the right ear canal of B2 showing the reticular layer of the dermis densely infiltrated with mononuclear cells

Fig. 26. Actively secreting ceruminous glands in the left ear of animal B1

Fig. 27. Osseous part of the right ear canal of animal B3 showing a keratinized epithelium and organizing dermis

Fig. 28. Osseous part of the left ear canal of B7 showing disrupted epithelium and cellular infiltrated dermis

Fig. 29. Osseous part of the left ear canal of animal B7 showing the dermis densely infiltrated with mononuclear cells

Fig. 30. Normal cartilaginous part of the left ear canal of animal B9

Fig. 31. Less active ceruminous glands from the left ear canal of animal B9

Fig. 32. Normal osseous part of the left ear canal from animal B11
LIST OF TABLES

Table 1. Experimental design to determine the pathogenicity of Rhabditia spp in cattle 38
Table 2. The prevalence of Bovine Parasitic otitis in the traditional herds from Central Kajiado Division 44
Table 3. Area prevalence of Bovine Parasitic otitis in Makuyu Division 44
Table 4. Nematode species associated with Bovine Parasitic otitis in Makuyu 45
Table 5. Mean survival time of Rh. bovis in Kajiado dip samples 48
Table 6. Mean survival time of Rh. bovis and Rh. blumi in Makuyu dip samples 48
Table 7. Clinical response to the infection for 90 days 51
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clinical response to the infection in a period of 90 days</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>Worm isolation from the infected ears during the 90 days</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>Bacteria isolation from the ears before the experiment</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>Bacteria isolation from the ears at the end of the experiment</td>
<td>95</td>
</tr>
</tbody>
</table>
ABSTRACT

A field study was carried out to determine the prevalence of Bovine parasitic otitis in the semi arid (hot dry) and the high potential (cold humid) areas of Kenya. A prevalence ranging from 27.3% to 78.3% was recorded in the semi arid areas of Kajiado and of between 5% and 13.6% in the high potential areas of Makuyu (Murang’a) where the disease also occurred in a less severe form. There was a significant difference in the prevalence (P < 0.001) and severity of the disease between the two agro-ecological regions. However, the observations in the semi arid areas were comparable to what have been reported from the hot and humid (coastal) areas where the disease is known to be more prevalent. *Rhabditis* (Rh) *bovis* alone was found to be associated with the infection in the semi arid while Rh. *bovis* and Rh. *blumi* in separate or mixed infection were identified from the high potential areas. Where it occurred alone, Rh. *blumi* was found to be associated with mild and chronic cases.

Rh. *bovis* was not isolated from any of the dips used by infected cattle while Rh. *blumi* was recovered from one dip. The nematodes survived in dip samples from the understrength dips for an average of 3 days for Rh. *bovis* and more than 3 weeks for Rh. *blumi*. In freshly prepared correct strength acaricide solutions, both species were killed within 10
minutes by Amitraz a diamide (Triatix-Coopers) and in less than 2 hours by Chlorfenvinphos (Supona, Shell and Supadip, Wellcome). In Delnav (Delnav DFF-Wellcome) and in water Rh. bovis survived for only 3 days whereas Rh. blumi survived for 28 days. Delnav and understrength Chlorfenvinphos dips are good reservoirs of Rh. blumi but can act as source of infection for both species during cattle dipping.

In an experimental study to determine the pathogenicity of the two Rhabditis species, three of the four cattle infected with Rh. bovis developed a bilateral moderate, severe, or very severe otitis externa within 5 to 17 days (10) after infection. The clinical, pathological and histological changes were similar to what have been reported on field cases of the disease. No animal infected with Rh. blumi developed clinical otitis, but all of them showed a unilateral or bilateral increase in soft cerumine secretion from which worms were recovered. The reaction receded soon after the worms disappeared from the canal. One ear in which the reaction persisted for 76 days had a hyperaemic mucosa. This together with two others, showed a partly disrupted and necrotic epidermis and inflamed dermis on histological examination. The changes however, appeared to be a result of the pyogenic bacteria found in the ears rather than from worms. These results support the field study and other reported studies that Rh. blumi is a less pathogenic free living species whose occurrence in the ear may be a chance contamination.
1.0 INTRODUCTION

Bovine parasitic otitis also known as Nematode otitis is a serious external ear infection of cattle. The disease is normally chronic but it may occasionally be acute. It is clinically characterized by presence of thick grey or brown foul smelling aural discharge containing many tiny worms. In some cases the infection extends into the middle ear to cause otitis media. Further extension can either result into pharyngitis or meningoencephalitis, clinically manifested by central nervous symptoms (Jibbo, 1966). The normally herd problem causes economic losses through chronic wasting, lowered productivity and deaths resulting from the infection, intercurrent diseases and culling of chronically infected animals. More losses are attributed to treatment and control measures which are not specific.

Although the disease was first reported as far back as 1956 (Round, 1962), it is only recently that it has become known and its economic importance appreciated. It is believed to be widespread in East Africa, other African countries and elsewhere (Msolla et al, 1986). In Tanzania, the condition is known to occur in all coastal and several up country regions, where a prevalence of over 70% has been reported (Msolla et al, 1986). Its distribution and prevalence in Kenya is not well known. Although the disease is known to be more prevalent in areas with hot and humid type of climate, it has also been reported from areas with
hot dry and cold humid types of climate (Msolla et al., 1986; Odongo and D’Souza, 1989). The significance of the disease in these areas is yet to be determined.

The disease is primarily caused by a nematode of the genus **Rhabditis**. Several species are believed to be involved (Lweno et al. 1983). Four species have so far been identified. Two of these; **Rh. bovis** (Kreis, 1964) and **Rh. blumi** (Sudhaus, 1974) have been described from Tanzania, and the other two; **Rh. freitas** and **Rh. costai** from Brazil (Martin Junior, 1985). **Rh. bovis** and **Rh. blumi** commonly occur together in infection but usually with the latter occurring in fewer numbers. **Rh. blumi** has been found to flourish well in manure and soil for several months unlike **Rh. bovis** which survives for less than a week (Msolla et al., 1986). These observation may imply that **Rh. blumi** is more adapted to free-living than the latter. Sudhaus (1980) however, has shown experimentally that it is adapted to parasitism of warm blooded animals. Using **Rh. bovis**, Lweno et al., (1983) and Msolla et al., (1986) have successfully reproduced the disease in cattle and rabbits respectively. However, the distribution and pathogenicity of **Rh. blumi** has not been studied.

The condition is usually complicated by pyogenic and putrefying bacteria most of which are normal flora of the auditory canal. In neglected cases myiasis infestation may also occur (Jibbo, 1966).

Several means of transmission of the disease have been
advanced and some studied. Diptanks used in tick control have been incriminated to play a major role (Jibbo, 1966). Higher incidences of the disease occur in dipped than in sprayed animals (Msolla, 1984). In an epidemiological study by Msolla et al, (1986), up to 20 viable nematodes were recovered from 100ml of 0.25% toxaphene dipwash obtained from a diptank routinely used by infected herds. The worms survived in the solution for two weeks. Manure and mud are believed to be reservoirs and sources of infection. Flies are thought to play a significant role in the spread of the disease. (Kreis, 1964; Jibbo, 1966; Msolla et al, 1989)

Different combinations of anthelmintics and antibiotics have been tried to treat the condition (Jibbo, 1966; Msolla et al, 1985; Odongo and D’souza, 1989). The effectiveness of these treatments have been limited by the fact that, reinfection occurs a few days following a successful treatment, cases at advanced stage do not respond to treatment while early diagnosis and treatment is tedious and expensive. Control seems to be the more sound approach to fight the disease. Control measures directed at dip tanks (Msolla et al, 1987) and manure removal from resting and sleeping bomas (Jibbo, 1966) have been suggested and tried. However, these measures will be useful only if the Rhabditis species supported by the reservoirs happen to be the pathogenic ones.

The main objectives of this study were:
1. To determine the point prevalence of the disease in areas with hot dry (semi arid) and cold humid (high potential) type of climates in Kenya.

2. To identify the *Rhabditis* species associated with the infection in the areas.

3. To determine the role played by diptanks as reservoirs of the nematodes in the areas.

4. To determine the pathogenicity of the various *Rhabditis* species found to be associated with the infection in the areas.
2.1 OCCURRENCE AND DISTRIBUTION

Bovine parasitic otitis was first reported in Kenya by Barnett in 1956 at Lariak East Ranch, Rumuruti (Round, 1962) and in Tanzania by Molloy in 1959 at Mkwaja Ranch, Tanga, (Jibbo, 1966). Currently it is believed to be wide spread in East Africa (Soulsby, 1982). In Kenya it has been reported in several districts including Nakuru, Narok, Murang'a, Taita Taveta and Nyandarua (Odongo and D'souza, 1989, Anon, 1980-1990). However, the prevalence of the disease in this country is not well known. In Tanzania where more epidemiological studies are being carried out, it is known to occur in all coastal and several upcountry regions. It has also been reported in Uganda, Zimbabwe, Botswana, Sudan and Egypt (Msolla et al, 1986). Outside Africa, it has been reported in Brazil (Martin Junior, 1985). The disease is possibly more widespread than it is currently known. The apparent wide distribution may be a result of animal movements, increased use of diptanks and the increased awareness of the disease among veterinarians and livestock owners.

The disease is known to be more prevalent in hot humid areas such as the coastal areas where a prevalence of over 70% has been recorded. But recently it has been reported from hot and dry areas such as the semi arid areas of Dodoma region in Tanzania (Msolla et al, 1986) and Rift Valley
province in Kenya (Odongo and D'souza, 1989). The same authors have also reported it from cold humid areas such as the high potential areas of Mbeya region in Tanzania and Central province in Kenya.

2.2 ETOIOLOGY

The condition is primarily caused by a nematode of the genus Rhabditis. Various species of the normally free-living genus are believed to be associated with the infection (Lweno et al., 1983). Two species; Rh. bovis and Rh. blumi have been identified in Tanzania and two others; Rh. freitas and Rh. costai in Brazil.

Rhabditis bovis was identified and described by Kreis (1964) from aural samples obtained from Mkwaja Ranch, Tanga in Tanzania. He classified it to belong to the superfamily Rhabditoidea Travasso, 1920, family Rhabditidae Oerley, 1880 and subfamily Rhabditinae Micoletzky, 1922. It is a tiny nematode measuring between 0.8 mm and 1.1mm long, males being shorter (0.8-0.85mm) and thicker than females (1.0-1.1mm). The body is pointed at both ends.

The anterior end shows six flat lips each of which presents a number of papillae. The mouth is prismatic, longer in female than in male (Fig.1a). Posteriorly the mouth ends in a prisme, a well developed mouth dilatation which comes into contact with the oesophageal cuff. The oesophagus is rhabditiform (Fig.1b) a characteristic feature of the genus. At the front end, the oesophageal lumen
widens behind the cuff and then thins out further on. There is a well developed middle bulb found exactly at the middle of the oesophagus. The bulb is smaller than the terminal (posterior) bulb and it has no shutter apparatus (valve). Behind it is the thin isthmus surrounded by a nerve ring. The isthmus leads to the posterior bulb which is round and with a well developed shutter apparatus. The rest of the alimentary canal does not present any peculiarity. The posterior end thins out and sharpens into a long tail in the female (Fig. 2a) while it is broader, ending in a short tail which is completely enclosed in the copulatory bursa in male (Fig. 2b and 2c).

The male worm resembles *Rh. strongyloides* but it is smaller and thinner than the latter which measures 1.3 - 2.3 mm in length. Its anal pad (Fig. 2c) does not reach the margin of the copulatory bursa to form the anal tubercle found in *Rh. strongyloides*. The spicules are clearly separated and are wide proximally but pointed at their distal ends. The gubernaculum has a proximal curved club appearance on dorsoventral view (Fig. 2b) but a digit like appearance on lateral view (Fig. 2c). Its distal end broadens to give a plate like appearance similar to that of *Rh. aspira*. The copulatory bursa is large (Fig. 2b and 2c) and encloses the distal half of the spicules. Laterally it is supported by nine pairs of rib-shaped rays. There are two preanal pairs, four postanal pairs including the largest pair and three closely placed terminal pairs.
The female sexual apparatus (Fig. 3) are symmetrically positioned on either side of the centrally placed vulva. It is a viviparous nematode and in a mature worm, about 10-12 eggs and/or larvae can be seen. The larvae develop very fast in the uterus and may show their digestive apparatus at a relatively early stage. The eggs usually at different developmental stages, some at morula stage and some with coiled larvae, are not always grouped together; some can also be found around the vulva. The vulva presents well developed lips. The ovaries are enveloped though not in their totality.

The life cycle of *Rh. bovis* in the host and in free-living state has not yet been studied. In culture it has been found to multiply and develop very fast completing the life cycle within 24-48 hours (Lweno *et al.*, 1983). The species was probably a saprophytic nematode which due to unfavorable external conditions turned into an ectoparasite. Unlike many members of the genus which are free-living, it has been found under laboratory conditions to survive for less than a week in manure and soil (Msolla *et al.*, 1986). Also it cannot easily be recovered from manure and soil obtained from infected animal resting area (Msolla *et al.*, 1990). Lweno *et al.*, (1983) have been able to reproduce the disease in cattle and Msolla *et al.*, (1986) in rabbits using this species.

Rh. blumi was identified and described by Sudhaus (1974) from aural samples obtained from several ranches in
coastal regions of Tanzania. The nematode has the same size as *Rh. bovis* but unlike the latter, the female posterior ends in a short tail. The nematode has many of the general characteristics of the genus. It has a rhabditidal buccal capsule and rhabditiform oesophagus (Fig.4). The corpus of the oesophagus gradually enlarges posteriorly to the metacarpus which unlike in *Rh. bovis* does not have the middle bulb. There is a well developed posterior bulb with a shutter apparatus behind the isthmus.

In the male the short tail can either touch the copulatory bursa or extend a short distance beyond it (Fig. 5a and 5b). The copulatory bursa is large and is pointed posteriorly. Laterally it is supported by eight pairs of rays. The preanal group of the rays comprises of sparsely arranged three pairs with the most anterior being the smallest. The postanal group also has three pairs which include the largest rays while the terminal group has two pairs and a third pair whose rays are reduced into a form of setae.

The female sexual apparatus are symmetrically arranged extending posteriorly and anteriorly from the centrally placed vulva. It is also a viviparous nematode (Fig.6). About 49 eggs develop at the same time in the female and out of these an average of 24 hatch to juveniles in the uterus. It takes seven days following copulation for the young to attain maturity. But it takes only 2-3 days for the larvae outside the female to develop to adult although it can take
more time in unfavorable conditions. The adults live for another 7-15 days.

The distribution of *Rh. blumi* is not known but it may be as widespread as *Rh. bovis*. In clinical cases it is usually found in mixed infection with the latter but normally in a much smaller proportion (Msolla *et al.*, 1986). Under laboratory conditions it has been found to flourish for several months in manure and soil (Msolla *et al.*, 1986). In a field study, Msolla *et al.*, (1989) recovered it in large numbers from soil and manure obtained from animal resting areas. These observations indicate that the species is a free-living nematode. However, Sudhaus (1980) in his studies on the upper limiting temperature of different saprophagous *Rhabditis* species observed *Rh. blumi* to be adapted to parasitism in warm-blooded animals.

Two more species have been identified and described by Martin Junior (1985) in Brazil. The first, *Rh. freitas* Fig. 7 and 8) was isolated from aural samples obtained from Formosa county in the state of Goias while the second one *Rh. costai* (Fig. 9 and 10) was identified from Sertanozinho county in the State of Sao Paulo.
Fig. 1. Rhabditis bovis: Anterior end.

a) Head - female x 660 b) oesophagus - male x330;
Fig. 2. *Rhabditis bovis*: Posterior end.

a) Female Posterior end x 200
b) Male Posterior end, dorsoventral view x 330
c) Male Posterior end, lateral view x 330

Fig. 3. *Rhabditis bovis:*
Female reproductive structures x 130.
Fig. 4. *Rh. blumi*: anterior end
1. mouth 2. buccal capsule 3. oesophagus corpus
4. nerve ring 5. oesophagus isthmus 6. posterior bulb, 7. valve.
Fig. 5. *Rh. blumi* male posterior end.
 a) dorsoventral view b) lateral view
1. spicules 2. gubernaculum 3. copulatory bursa
4. Anal opening 5. rays 6. tail
Fig. 6. *Rh. blumi* female reproductive structures.
1. vulva 2. eggs 3. larva
Fig. 7. *Rhabditis freitasii*

1. male b. female c. anterior end - the head.

1. corpus of the oesophagus, 2. nerve ring
3. posterior bulb, 5. buccal capsule 4. mouth
6. oesophageal cuff.
Fig. 8. *Rhabditis freitas*, posterior end.
a. male posterior end lateral view, b. male dorsoventral view, c. female posterior end
1. spicules 2. rays, 3. copulatory bursa
4. tail 5. anal pad.
Fig. 9. *Rhabditis costalis*

a) male b) female, c) anterior end, the head
1. corpus of the oesophagus, 2. nerve ring,
3. posterior bulb 4. buccal capsule 5. mouth
6. oesophageal cuff.
Fig. 10. *Rhabditis costai*, posterior end.

a. male, lateral view
b. male, dorsoventral view,
c. female, 1. spicules, 2. copulatory bursa
3. anal pad, 4. rays 5. tail.
In addition to the nematode, several bacteria have been isolated from clinical cases of the disease. The most frequently isolated include: *Pseudomonas aeruginosa*, *Corynebacterium bovis*, *Corynebacterium pyogenes*, *Streptococcus* spp, *Klebsiella* spp and other coliforms (Iweno *et al.*, 1983; Msolla *et al.*, 1984 and 1986). The role of the bacteria in the disease has been demonstrated experimentally to be secondary to that of the nematode (Msolla *et al.*, 1986). In long standing and neglected cases, myiasis infestation, mainly of *Chrysomia bezziana* have been reported. (Jibbo, 1966)

2.3 EPIDEMIOLOGY

Bovine Parasitic Otitis is principally a disease of cattle but recent field studies carried out in Kajiado district (Kenya) have shown that it may also affect goats (Odongo and D’souza, 1989). The disease is prevalent in hot humid areas with more incidence during the rainy season. In cattle, an infection rate of 75-80% in a herd with as low as 4-5% clinical cases has been recorded (Jibbo, 1986; Msolla *et al.*, 1984). This indicates that the infection is a herd problem. Zebu cattle are more susceptible than the exotic breeds. This is attributed to the anatomy of the external auditory meatus which is longer, narrower and with more secretory glands than the exotic breeds. These features create a warm environment favourable to the saprophytic nematode and bacteria (Jibbo, 1986; Harvey, 1980). All age
groups are equally affected but more severe clinical cases occur in immature animals (Lweno et al., 1983; Msolla et al., 1984).

Several means of transmission of the disease have been suggested and some studied to a certain extent. Diptanks used in tick control have been incriminated to serve as reservoirs and sources of infection (Kreis, 1964; Jibbo, 1986). The disease is more prevalent in dipped than sprayed cattle (Lweno et al., 1983). In a field study, Msolla et al. (1984) observed an incidence of up to 80% in dipped animals but less than 5% in sprayed animals, implying that dipping plays a greater role than other possible means of transmission. In another epidemiological study (Msolla et al., 1986), as many as 20 viable Rhabditis worms were recovered from 100mls of toxaphene dipwash obtained from a diptank routinely used by infected herds. The worms were found to survive for up to 15 days in the dipwash and remained viable and even multiplied in freshly prepared 0.25% toxaphene for up to 28 days. The worms are introduced into the diptanks from the environment by contaminated hooves and directly from clinically infected animals by aural discharge during dipping. Healthy animals then pick the infection from the diptanks (Msolla et al., 1984).

The occurrence of the disease in herds which are neither dipped nor sprayed, implies the existence of other modes of transmission (Lweno et al., 1983). Flies have been incriminated in the spread of the disease. The idea is
supported by the appearance of many flies around the infected ears, involvement of myiasis in the infection (Jibbo, 1966) and the high incidence coinciding with the increased fly activities during the warm humid weather (Msolla et al., 1986). The flies can easily pick up the worms from the aural discharge on the external pinna, around the earbase and the neck region from where a worm recovery rate of up to 93% has been recorded (Msolla et al., 1984). Msolla et al. (1989) recovered Rh. bovis and Rh. blumi from flies caught around the ears of infected cattle.

Manure and mud are thought to act as reservoirs of the nematode. The habit of cattle scratching their ears with hooves can result into direct introduction of the nematode from the contaminated manure and mud (Jibbo, 1966). Migration of the tiny worms from the soil into the ear of an animal lying down is not likely to take place (Dunn, 1978; Scott, 1988). Flies which breed in manure contaminated with the free-living nematode can spread the infection from farm to farm. In different studies, larvae of Rh. dubia. Rh. curvicaudata and an unidentified Rhabditis spp, were found twined around the intersegmental furrows of the abdomen of Psychodid flies (Owl midge or Hairy moth) which had developed in manure (Tod et al., 1971). However, in a laboratory (Msolla et al., 1986) and a field study (Msolla et al., 1989), it was shown that manure and mud support Rh. blumi better than Rh. bovis.
Transmission by direct contact and aural discharge is least significant since healthy cattle kept with clinically infected ones for five months in a closed room did not contract the disease (Iweno et al., 1983). However, infected animals are considered to be the major source of the infection and are responsible for the spread of the disease from endemic to clean areas, (Msolla et al., 1984).

2.4 PATHOGENESIS

The pathogenesis of the disease is not well known. The length of the external ear canal, presence of hair tufts, wax, epithelial debris, increased glandular secretion stimulated by warmth and humidity and traumatic wounds such as tick bite or defective ear tag wounds, are thought to predispose the infection (Jibbo, 1966; Hayes et al., 1987). The gross and histological lesions of the infected ear indicate that the nematode causes erosion and ulceration of the top epithelial cover. This allows the normally present bacteria to reach the lower epithelium and sub-epithelium where they cause necrotizing or suppurative inflammation depending on the type of bacteria involved. In histological sections, the worms are not seen beyond the epithelial layers (Iweno et al., 1983).

From the inflamed outer ear, the bacteria can extend into the middle ear through a damaged tympanic membrane to cause otitis media. Damage to the facial nerve can result in facial paralysis. From the middle ear the bacteria can
extend further through the pharyngotympanic tube to the pharynx to cause pharyngitis. They can also extend into the inner ear up to the brain resulting in meningoencephalitis. (Jibbo, 1966; Lweno et al, 1983). Subsequent to the development of the external ear lesions, flies are attracted by the foul smelling exudate causing further damage leading to severe otitis and myiasis infestation. Immunity to the disease is not known to occur, but in some chronic cases the nematode may be eliminated and the healing result in complete blockage of the meatus (Msolla et al, 1986).

2.5 CLINICAL SIGNS

The initial signs of the condition usually pass unnoticed. However, in the advancing stage, the infected animal becomes dull, frequently shakes the head and flaps the affected ear which may become droopy. The affected ear initially contains a bloody discharge mixed with pus which later on becomes dirty brown or dirty grey in colour. The discharge has a characteristic putrid odour which can be perceived from a distance. This increases in amount with time thereby blocking the meatus and oozing out to soil the hair below and the front aspect of the ear, the cheek as well as the neck region. There is swelling of the external meatus thereby distorting it and even completely occluding the lumen leading to deafness. There may also be swelling of the base of the ear, local lymph nodes and even the
eyelids. There is alopecia at the base of the ear and the front aspect of it due to the detachment of the dried discharge. In the chronic cases the infection may disappear and the healing of the wound result in a complete and permanent occlusion of the meatal lumen. The infection may be unilateral or bilateral and it is painful. The animal grazes little, loses condition and the hair coat becomes rough. In lactating animals, there is a drop in milk production. (Jibbo, 1966, Msolla et al., 1986).

Involvement of the middle ear results into pharyngitis. This is clinically manifested by impaired chewing of the cud and swallowing. Green fluid may be seen dropping from the angle of the mouth on the side of the affected ear as a result of this. Infection of the inner ear and subsequently the brain is manifested by stiffness of the neck, holding the head down and circling towards the affected side. Where the facial nerve is affected, there will be facial paralysis, closing of the eye, sagging of the lip and dilation of the nostril on the affected side. The gait becomes unsteady and later, the animal lies down on lateral recumbency, usually towards the affected side with paddling motions few days before death. There are cases where no signs other than the nervous symptoms are observed though closer examination of the ear reveals the infection (Jibbo, 1966). The external meatus of one or both ears will be found covered with a thin film of yellowish or greyish putrid material in which myriads of actively moving worms
can be seen with naked eyes. Normally the mortality rate is low, about 3-4%, but it can reach up to 10% in unattended to and neglected cases. More deaths are attributed to intercurrent diseases of the stressed animals (Jibbo, 1966; Lweno et al, 1983; Msolla et al, 1986).

2.6 PATHOLOGY

Apart from the general emaciation in the chronic cases, all the postmortem lesions are confined to the head. There is a dirty brown or dirty grey discharge from the external meatus in which motile worms can be seen. The mucous membrane is initially red but later becomes ulcerated and eroded either partly or extensively. The epithelium may become swollen to obliterate the lumen. In long standing cases, the conchal is perforated and the base of the ear is so undermined that the ear can easily fall off. Pharyngitis and local lymphadenitis are features of the chronic cases associated with otitis media. When the brain is involved there is meningoencephalitis consisting mainly of gangrene and abscessation of the lateral side of medulla oblongata and the cerebellum. Usually the cranial border of this lesion is thickened and necrotic (Kreis, 1964; Jibbo, 1966, Lweno et al, 1983).

Histological examination of tissue sections from the external ear shows superficial epithelial desquamation or severe loss of epithelium down to the subepithelium. The exudate underlying the epithelium consists of necrotic
epithelial cells, some lymphocytes, plasma cells, macrophages and neutrophils as well as sections of worms. The subepithelium is infiltrated with both mononuclear and polymorphonuclear cells (Lweno et al, 1983).

2.7 DIAGNOSIS

Diagnosis of the disease is based on the epidemiology and clinical signs which are fairly specific. It is confirmed by otoscopic and microscopic examination of wet smear preparation of the aural discharge to demonstrate the presence of worms (Jibbo, 1966).

2.8 TREATMENT

Various topical treatments with combinations of anthelmintics and antibiotics have been tried with variable effectiveness. A combination of 3.9% W/V gamma-isomer BHC (Coopers) with sulphonamide powder, Benzene hexachloride DDVP (Nuvan-CIBA) and Loxerane with Oxytetracycline powder have shown a reasonable success (Jibbo, 1966). Subcutaneous injection of the broad spectrum anthelmintic Ivermectin at a dose rate of 10 mg/50 kg body weight accompanied with topical application of antibiotics is 95% effective (Msolla et al, 1985). However, the drug is expensive, thus limiting its use on a large scale. Other drugs tried include, trichloroforn (Neguvon-Bayer) with oxytetracycline and a mixture of tannic acid and salicylic acid in ethanol (Odongo and D’souza, 1989). Despite the appreciable response in
various treatment trials, reinfection occurs a few days following a successful treatment (Jibbo, 1966; Msolla et al., 1986), advanced stages of the disease do not respond to any treatment and since the condition is usually a herd problem, treatment is expensive (Msolla et al., 1987).

2.9 CONTROL

In an attempt to control the disease several approaches have been put forward. Regular diagnosis and treatment of early cases may reduce the spread of the disease in a herd (Jibbo, 1966). However, the approach is tedious especially in large herds and ranch animals as it involves ear examination of all animals in the herd. Removal and proper disposal of manure from the night and resting bomas and paddocks may also reduce the spread (Jibbo, 1966). The approach however will be more effective in the control of Rh. blumi than Rh. bovis infection.

Control through the diptanks have been tried (Msolla et al., 1987). Application of 2.08 ppm of nicotine (obtained from tobacco extract) in 0.25% toxaphene dipwash was found to be 95% effective in treatment and control of the disease in animals dipped twice a week for 12 weeks. The nematode which were easily recovered from the dipwash before the treatment could not be recovered within 48 hours following the treatment. The treatment kills the worms in the infected ears and in the dipwash, and it has no effect on the toxaphene efficacy to tick control.
3.1 FIELD STUDY

3.1.1 Areas of Study

Two districts with the history of the disease were selected from two different ecological regions of Kenya. One division was picked from each district and from each division areas of study were selected. Several traditional herds of cattle were chosen and from each herd thirty or more animals of mixed age and sex were randomly sampled and studied. One dairy farm with exotic breeds of cattle was studied in each division. Dipwash samples from the dips used by the animals in the areas were collected and analysed.

3.1.1.1 Kajiado District

Kajiado is mainly a semi arid (hot and dry) district in the Rift Valley province located in the southern part of the country. The local cattle population comprises of improved zebus managed in large traditional herds and ranches. Tick control is carried out by dipping in private and communal dips and some herds by hand spraying. The commonly used acaricides include; Delnav (Delnav DFF, Wellcome), Chlorfenvinphos, (Supadip DFF, Wellcome), emulsifiable Chlorfervinphos (Supona 50%, Shell) and Amitraz adiamide (Triatix, Coopers). Central Division was selected from the district and in it the following areas and herds in brackets

3.1.1.2 Murang’a District

Murang’a District is in the high potential agro ecological zone (cold humid climate) in the central Kenya. There was no confirmed Bovine parasitic otitis case in the District veterinary office’s (DVO) Field reports. However, sporadic cases of otitis externa were reported mainly from Makuyu division which is relatively dry compared to other divisions of the district. The division has several ranches and many small scale farmers keeping few (1-5) improved zebus or cross breeds under pasture management. There has been little changes from Chudleigh’s (1974) report that there were about 60% of the farms running 1-2 zebus, 10-30% running grade cattle and 20% with no cattle at all. Tick control is carried out by dipping mainly in communal dips, using Supadip. Five communal dipping centres were selected each to represent an area of study and the number of cattle dipped per day to represent the herd size. The centres with the dipping rates in brackets are; Kalianne (60), Mihango (130), Pundamilia (450), Malema (360) and Kenjugu (380). Nanga Estate dairy farm with 68 Friesian and Ayrshire cows managed in a fenced farm with no contact with other animals in the area, was studied.
3.1.2 Point Prevalence

Sampled animals were clinically examined physically and otoscopically for the general symptoms of the disease and presence of discharge and lesions in the ear canal. Ear swab samples were taken from each ear of all the sampled animals and transported in physiological saline to Kajiado DVO's or University laboratories for microscopic examination. The samples were examined under a dissecting microscope for the presence of worms. Animals were considered to be infected if they were found to show clinical signs and/or presence of worms in the ear canal.

3.1.3 Identification of the nematode species associated with the infection

The nematode species were identified morphologically by microscopic examination. Each ear swab sample found under the dissecting microscope to contain worms, was diluted with physiological saline and left for an hour to sediment. A drop of the sediment was drawn and put on a microscopic slide, a drop of lugol's iodine added to it (to kill and stain the worm) before applying a cover slip. The preparation was examined under a compound microscope at x 100-400. Up to 100 worms were studied from each sample. Where a mixed species infection was suspected, the sample was subcultured in serum agar and incubated at 30°C for seven days so as to enable the number of Rh. blumii increase.
3.1.4 Assessment of the role played by dips as reservoirs of the nematode

The history of tick control in each herd of study was obtained from the owner. The type of acaricide used, frequency of dipping and replenishment of the dip were recorded.

3.1.4.1 Identification of the nematode species supported by dips in the areas

Six dips in Kajiado and five in Makuyu used by the herds of study were examined. The dips from Kajiado with the type of acaricides in brackets are; Yiare (Triatix), Rosencha (Delnav), Leiyo (Supadip), Olkenos (Supona), Ngumila (Supadip) and Mutunkei (Delnav). Those from Makuyu are; Pundamilia, Mihango, Kalianne, Malema and Kenjugu. They are all communal and use Supadip acaricide.

Dip samples were collected from the dips and processed following the procedure described by Msolla et al (1986) with modifications. One litre was collected before dipping, during dipping and one after the dipping session. In the laboratory, each sample was thoroughly mixed and 100ml of it poured in a flask, diluted with water and left for an hour to sediment. The supernatant was discarded and the process repeated twice. Five millilitres of the sediment was drawn at a time, put in a petri dish, diluted with ten millilitres of saline and examined under dissecting microscope. The worms were counted and removed by a dropper for
morphological identification under a compound microscope. Five hundred millilitres of each original sample were examined.

Ten millilitres of the original sample were poured into a petri dish. An average of 100 live worms of the species found to be associated with the infection in the area were introduced. A petri dish containing water was used as a control. The time taken for all the worms to die was recorded. Ten replicas of the process were carried out and a mean survival time determined. The remaining amount of the original sample was taken either to Kabete veterinary laboratories or Wellcome Limited laboratory for strength analysis.

3.1.4.2 Survival Rates of the Nematodes in the Different Acaricides used in the areas of study

Fresh solutions at the recommended concentration of the four acaricides commonly used in the areas of study were prepared at the following dilution rates in water; 1:2200 (0.05% W/V) for Delnav and supadip, 1:1000 (0.05% W/V) for Supona and 1:500 (0.025% W/V) Triatix. Ten millilitres of each aliquot and of water were separately put in petri dishes and to it an average of 100 live worms of each species separately introduced and left at room temperature. The worm death rates were determined by counting the live worms under a dissecting microscope until all were dead. Ten replicas of the procedure were carried out and the mean
survival time of each nematode species in each acaricide solution and water determined.

3.2 EXPERIMENTAL STUDY

(Comparative Pathogenicity of *Rh. bovis* and *Rh. blumi*)

3.2.1 Experimental Animals

Eleven yearling cattle were used in this study. Eight yearling zebu bulls were obtained from Narok district and three weaner bulls from the University Veterinary farm. The animals were clinically examined to assess their health status. They were physically, otoscopically and microscopically examined for ear infection. They were also screened for trypanosomiasis using blood smear, buffy coat and antigen ELISA test. Three of them were found to be infected. The whole group was treated with Dibenzamidine-diaceturate (*Veriben, Sanofi Canada*) and oxytetracycline (*Adamycin 10%, Teva/Israel*) to take care of any other systemic infection. They were dewormed using levamisole (*Nilzan plus, Coopers*) and hand sprayed twice a week with Amitraz adiamide (*Triatix, Coopers*) for tick control. During the three weeks of acclimatization, the animals were monitored for any change in the body condition, body temperature and ear conditions. At the end of this period, they were placed into three groups, two of four animals each and one of three animals. Each group was confined in a flyproof room in the Isolation Unit of the Department of
Veterinary Pathology and Microbiology. They were fed on hay, wheat bran (Unga Feeds (K) Ltd) and mineral licks (Super maclick, Animal feeds (K) Ltd) and supplied with water ad-libitum. They were left for a period of two weeks to adapt themselves to the confinement before being infected.

3.2.2 Determination of Ear Bacterial Flora

Bacterial flora in each ear of the experimental animals before and at the end of the experiment was determined. The entrance to the ear canal was cleaned using a piece of cotton wool soaked in alcohol. A sterile ear swab was then inserted deep into the canal, rotated several times and removed. The swab was put in nutrient broth and incubated at 37°C overnight. The bacteria were identified by cultural growth, morphology and staining characteristics as well as biochemical tests. (Cowan, 1985)

3.2.3 Nematode Preparation

Two *Rhabditis* species were used in the study. The nematodes were obtained from clinical cases in the areas of study.

3.2.3.1 *Rhabditis blumi*

A pure culture of *Rh. blumi* was obtained from Mrs Peris Wambui's cow during a dipping session at Pundamilia dipping centre in Makuyu division, Murang'a District. Ear swabs
were taken from the animal, transported in physiological saline, cultured and maintained in sterile manure at 30°C for three weeks. The organisms had been found during the study to flourish and survive longer in manure than in serum or blood agar. Three days before infecting the experimental animals, the worms were harvested from the manure by washing the surface with saline and subcultured in serum agar. A few drops of oxytetracycline (Adamycin 10%, Teva) were added to the inoculated serum agar to eliminate bacterial growth and the plates incubated at 37°C for three days.

3.2.3.2 Rhabditis bovis

Pure cultures of Rh. bovis were obtained from Mr. Simon Mutunkei's herd at Kitengela in Central Kajiado. Ear swabs from infected cattle were washed in physiological saline, and the washes immediately transferred into serum agar plates. This was aimed at reducing the worm deaths observed earlier on when transported in saline. A few drops of the antibiotic were added to the culture. In the laboratory, the species of the worms were determined and the pure cultures incubated at 37°C for three days.

3.2.3.3 Harvesting of the Worms

On the third day of incubation, the nematodes were separately harvested from the cultures by washing the agar surface with saline. The worm species in each harvest was confirmed. The harvest of each species was diluted by
physiological saline at a rate of 1:5 and centrifuged at 2000 r.p.m for 5 minutes. The supernatant was discarded and the process repeated three times to wash the worms and remove the antibiotic which had been incorporated into the culture. The final sediment was diluted to give an average worm count of 1200 worms/ml. The worm count showed an average of 58% and 63% of the worms in the Rh. blumi and Rh. bovis suspension respectively to be larvae.

3.2.4 Infecting Protocol

The three groups of the experimental animals were given treatments as shown in table 1 below:

Table 1. Experimental design to determine the pathogenicity of Rhabditis spp in cattle.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>ANIMALS</th>
<th>TREATMENT GIVEN TO BOTH EARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1, B2, B3, B4</td>
<td>Infected with Rh. bovis</td>
</tr>
<tr>
<td>2</td>
<td>B5, B6, B7, B8</td>
<td>Infected with Rh. blumi</td>
</tr>
<tr>
<td>3</td>
<td>B9, B10, B11</td>
<td>Left to serve as controls</td>
</tr>
</tbody>
</table>

One millilitre of the worm suspension containing about 1200 worms was introduced deep into the canal of each ear using a dropper. The ear was massaged and held upright for about a minute to enable the suspension to settle in the canal. The worm number used in the infection was considered
sufficient to take care of the worm losses resulting from the head shaking and for the possibility that some of the worm developmental stages may not have been infective.

3.2.5 Clinical Examination

The development of the disease was monitored after every two days for a period of 90 days. The animals were examined for changes in body condition, body temperature, head and ear posture and the size of the retropharyngeal lymph nodes. Detailed examination of the ears was carried out physically and otoscopically to check for the presence of discharges and lesions. An otoscope (Gowlands Ltd, Coydon England) with three sets of specula was used. Each group was examined using a different speculum. The speculum was cleaned using a piece of cotton wool soaked in alcohol after single ear examination. Ear swab samples were taken after every one examination using a sterile ear swab, washed in physiological saline and examined under a dissecting microscope for the presence of worms. The worm species were confirmed by morphological examination of wet smear preparation of the ear swab samples under a compound microscope.

3.2.6 Pathological Examination

At the end of the experiment, all the animals were sacrificed. Routine postmortem examination was carried out on each animal. Detailed examination of the head was carried
out. The head was disarticulated at the atlanto-occipital
joint and examined for otitis. The concave and convex
surface of the pinna were thoroughly examined. An incision
was made along the lateral side of the pinna extending from
the tragus to the temporal bone, thereby exposing the
cartilaginous part of the ear canal. The pharyngeal region
was exposed and examined for possible extension of the
infection.

The osseous part of the ear canal, the middle and inner
ear were opened following the procedure described by Jensen
et al (1982 and 1983). The skin, auricula, tongue, muscles,
hyoid bones, larynx, ventral soft tissues, mandible,
retropharyngeal lymph nodes, calvarium and the brain were
removed. The remaining skull was placed on a table on
lateral position with the intended ear upward. A wooden
probe was inserted into the full length of the osseous part
of the ear canal. Using a regular dehorning saw, straight
vertical plain incision was sawed parallel to the probe
along the posterior edge of the canal through the tympanic
cavity. The bones posterior to the incision were removed
and the osseous canal and the tympanic cavity exposed by
dissecting through using bone rongeurs, bone cutting
forceps, tissue forceps, knives and scissors. After
examining the regions through the cut surface, the ear
segments were separated from the skull with another incision
anterior to the ear canal and parallel to the first incision
together with further dissection. The ear segment and the
auricula containing the cartilaginous part of the canal were fixed in 10% formalin solution for histological examination.

For microscopic studies the ear canal was separated from the bony and the cartilaginous walls of the fixed tissue by dissecting it through. This was then processed by the paraffin method, sectioned tranversally and stained with Hematoxylin and Eosin stains. (Putt, 1972). The preparation was examined under a compound microscope.
4. RESULTS

4.1 FIELD STUDY

4.1.1 Point Prevalence

The prevalence of the disease in the traditional herds studied from Central Kajiado is shown in table 2.

A total of 413 cattle were examined out of 1729 cattle from 11 traditional herds in Central Kajiado. A prevalence rate ranging from 27.3% to 78.3% with the overall average rate of 58.4% was obtained through physical, otoscopic and microscopic examination. Bilateral and unilateral involvement of varying degrees of severity ranging from severe to mild and chronic otitis were noted.

Severely infected animals showed a loss of body condition. Although farmers reported occurrence of cases with central nervous symptoms, no single case was encountered in this study. On microscopic examination of ear swab samples, 202 of the infected animals (83.8%) were found to have worms in one or both ears. Some chronic cases had no worms while several of the clinically negative animals had worms.

Fifty eight out of 120 cattle slaughtered in two days at Mailitisa slaughter house were examined. Eight of these animals were found to be infected giving an infection rate of 13.8%. There was no infection in 35 cows examined from the Kajiado county council dairy farm. Here, the exotic breed animals are managed in a fenced farm with no contact with other animals in the area.
Two hundred cattle were examined out of 1380 cattle dipped in the five dipping centres during this study in Makuyu. The area prevalence of between 5% and 13.6% with the overall prevalence of 9.5% being recorded during the study (Table 3). Bilateral and unilateral clinical cases of moderate to mild and chronic severity were observed. No case with severe otitis or central nervous signs was encountered. Microscopic examination revealed 14 cases of the infected animals (73.7%) to have worms in one or both ears. Some chronic cases were without worms while some of the clinically negative animals had worms in their ears. There was no infection in the Nanga Estate dairy farm.

There was a significant difference in the prevalence ($P<0.001$) and severity of the disease between the hot dry (semi arid) areas of Kajiado and the cold humid (high potential) areas of Makuyu division.
Table 2. The Prevalence of Bovine Parasitic Otitis in the Traditional Herds from Central Kajiado.

<table>
<thead>
<tr>
<th>Herd</th>
<th>No. of cattle per Herd</th>
<th>No. of cattle examined</th>
<th>No. of cattle infected Bilaterally</th>
<th>No. of cattle infected Unilaterally</th>
<th>Total</th>
<th>Prevalence %</th>
<th>Cases with worms</th>
<th>Tick Control Method</th>
<th>Acaricide</th>
<th>Dipping Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yiare</td>
<td>236</td>
<td>45</td>
<td>18</td>
<td>5</td>
<td>23</td>
<td>51.1</td>
<td>18</td>
<td>D</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Silonga</td>
<td>132</td>
<td>40</td>
<td>16</td>
<td>14</td>
<td>30</td>
<td>75.0</td>
<td>26</td>
<td>HS</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Kosencha</td>
<td>140</td>
<td>45</td>
<td>12</td>
<td>13</td>
<td>25</td>
<td>55.5</td>
<td>20</td>
<td>D</td>
<td>De</td>
<td></td>
</tr>
<tr>
<td>Leilo</td>
<td>120</td>
<td>30</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>43.3</td>
<td>10</td>
<td>D</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Mtooki</td>
<td>96</td>
<td>30</td>
<td>11</td>
<td>4</td>
<td>15</td>
<td>50.0</td>
<td>15</td>
<td>D</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Ngumila</td>
<td>136</td>
<td>46</td>
<td>25</td>
<td>11</td>
<td>36</td>
<td>78.3</td>
<td>30</td>
<td>D</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Sapul</td>
<td>97</td>
<td>31</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>35.5</td>
<td>7</td>
<td>HS</td>
<td>De</td>
<td></td>
</tr>
<tr>
<td>Magul</td>
<td>250</td>
<td>30</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>66.7</td>
<td>13</td>
<td>HS</td>
<td>De</td>
<td></td>
</tr>
<tr>
<td>Kirema</td>
<td>62</td>
<td>33</td>
<td>12</td>
<td>9</td>
<td>21</td>
<td>63.6</td>
<td>21</td>
<td>HS</td>
<td>De</td>
<td></td>
</tr>
<tr>
<td>Mutunkei</td>
<td>200</td>
<td>50</td>
<td>28</td>
<td>10</td>
<td>38</td>
<td>76.0</td>
<td>36</td>
<td>D</td>
<td>De</td>
<td></td>
</tr>
<tr>
<td>Mmari</td>
<td>260</td>
<td>33</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>27.3</td>
<td>6</td>
<td>HS</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1729</td>
<td>413</td>
<td>142</td>
<td>99</td>
<td>241</td>
<td>58.4</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key
TCM - Tick Control Method
A - Acaricide
HS - Hand Spray
D - Dip
De - Delnav
T - Triatix
S - Supadip

Table 3. Area Prevalence of Bovine Parasitic Otitis in Makuyu Division

<table>
<thead>
<tr>
<th>Dipping Centre (Area)</th>
<th>No. of cattle per Herd</th>
<th>No. of cattle examined</th>
<th>No. of cattle infected Bilaterally</th>
<th>No. of cattle infected Unilaterally</th>
<th>Total</th>
<th>Prevalence %</th>
<th>Cases with worms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kali Anne</td>
<td>60</td>
<td>22</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>13.6</td>
<td>3</td>
</tr>
<tr>
<td>Mihango</td>
<td>130</td>
<td>40</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>5.0</td>
<td>0</td>
</tr>
<tr>
<td>Pundamilia</td>
<td>450</td>
<td>58</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>12.1</td>
<td>5</td>
</tr>
<tr>
<td>Malema</td>
<td>360</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5.7</td>
<td>2</td>
</tr>
<tr>
<td>Kenjugu</td>
<td>380</td>
<td>45</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>11.1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>1380</td>
<td>200</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td>9.5</td>
<td>14</td>
</tr>
</tbody>
</table>

All the dips use Supadip type of acaricide. The dipping centre is considered as an area of study and the day dipping rate as the herd size.
4.1.2 **Nematode Species Associated with the Infection**

Rhabditis bovis was found to be associated with the infection in all the 202 cases from Central Kajiado. Many female and male worms at different developmental stages were present in each of the ear swab samples.

Of the 14 cattle found to have worms in their ears from Makuyu, 6 (42.9%) were infected with *Rh. bovis*, 6 (42.9%) with *Rh. blumi* and 2 (14.2%) had unilateral mixed infection with the two species (Table 4). *Rh. blumi* was mainly found to be associated with chronic and mild infections which were characterized by presence of dark greenish or brown discharge in the ear canal. In the mixed infections, *Rh. blumi* occurred in lower proportions. All developmental stages were present in each of the swab samples.

Table 4. Nematode species Associated with Bovine Parasitic otitis in Makuyu

<table>
<thead>
<tr>
<th>Dipping Centre (area)</th>
<th>No. Cattle with worms</th>
<th>No. of cattle with Rh. bovis Bilateral</th>
<th>Unilateral</th>
<th>Total</th>
<th>Bilateral</th>
<th>Unilateral</th>
<th>Total</th>
<th>Bilateral</th>
<th>Unilateral</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalianne</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mihamgo</td>
<td>0</td>
</tr>
<tr>
<td>Pundamilia</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malema</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kenjugu</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

45
4.1.3 **Assessment of the Role Played by Dips as Reservoirs of the nematodes**

4.1.3.1 **Nematode Species Supported by Dips in the Areas of Study**

No worm was recovered from any of the dip samples obtained from the six dips studied in Kajiado. However, the mean survival time of *Rh. bovis* (The species found to be associated with the infection in the area) in the samples was 10 minutes in 51% understrength Triatix, 8 hours in 19% understrength supona, 3 days in over 50% understrength supadip, 30% overstrength Delnav and water and 4 days in 15% under strength Delnav. With the exception of Olkenos which was replenished two weeks before, all the dips had not been replenished for the last six months. Five dips were between 15% to 52% understrength while one was 30% overstrength (Table 5). During the study, larvae were found to survive longer than the adults in all dip samples. Gravid worms easily ruptured releasing their contents through the vulval opening.

In Makuyu, two live and 10 dead *Rh. blumi* worms were recovered from 500 ml of a dip sample obtained from Pundamilia dip. No worm was recovered in samples from the other dips. The mean survival time ranged from 3 to 4 days for *Rh bovis* and from 21 to more than 28 days for *Rh. blumi* in the various dip samples (Table 6). With the exception of
Pundamilia which was replenished a month before, all the other dips had not been replenished for the last six months. All dip samples were understrength.

Rh. bovis survived for an average of 3 days in all samples and in distilled water. Larvae survived longer while gravid worms easily ruptured in all the samples. *Rh. blumi* on the other hand, survived and even multiplied in Mihango, Pundamilia and Malema dip samples which were muddy and at a very low concentration. It also survived for three weeks in water. Larvae survived longer than the adults.

4.1.3.2 Survival Rates of the Nematodes in Normal Concentration of the different Acaricides used in the Areas of Study.

Both species were found to be highly susceptible to Triatix in which a mean survival time of five minutes for adults and 10 minutes for larvae was observed. They both survived in Supona and Supadip for an average of an hour for adults and 2 hours for larvae. *Rh. bovis* survived for 24 and 48 hours in Delnav and for 48 and 72 hours in water for adults and larvae, respectively. *Rh. blumi* on the other hand, survived for 21 days for adults and 28 days for larvae in Delnav and water.
Table 5. Mean Survival Time of *Rh. bovis* in Kajiado dip Samples

<table>
<thead>
<tr>
<th>Dip</th>
<th>Acaricide Used</th>
<th>Concentration % W/V Used</th>
<th>As % of Recommended</th>
<th>Mean survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yiare</td>
<td>Triatix</td>
<td>0.012</td>
<td>0.025</td>
<td>51% Understr.</td>
</tr>
<tr>
<td>Kosencha</td>
<td>Delnav</td>
<td>0.0425</td>
<td>0.05</td>
<td>15% "</td>
</tr>
<tr>
<td>Leilo</td>
<td>Supadip</td>
<td>0.010</td>
<td>0.05</td>
<td>50% "</td>
</tr>
<tr>
<td>Olkenos</td>
<td>Supona</td>
<td>0.045</td>
<td>0.05</td>
<td>19% "</td>
</tr>
<tr>
<td>Ngumila</td>
<td>Supadip</td>
<td>0.024</td>
<td>0.05</td>
<td>52% "</td>
</tr>
<tr>
<td>Mutunkulei</td>
<td>Delnav</td>
<td>0.0649</td>
<td>0.05</td>
<td>30% Overstr</td>
</tr>
<tr>
<td>Control</td>
<td>Distilled water</td>
<td>0.0</td>
<td>0</td>
<td>3 days</td>
</tr>
</tbody>
</table>

Table 6. Mean Survival Time for *Rh. bovis* and *Rh. blumi* in Makuyu Dip Samples.

<table>
<thead>
<tr>
<th>Dip</th>
<th>Acaricide Used</th>
<th>Concentr. % W/V</th>
<th>% to normal concentration</th>
<th>No.& spp. of worms/L recovered</th>
<th>Mean survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalianne</td>
<td>Supadip</td>
<td>0.033</td>
<td>34% underst</td>
<td>-</td>
<td>3 days</td>
</tr>
<tr>
<td>Mihango</td>
<td>Supadip</td>
<td>0.018</td>
<td>74% "</td>
<td>-</td>
<td>4 days</td>
</tr>
<tr>
<td>Pundamilia</td>
<td>Supadip</td>
<td>0.017</td>
<td>66% "</td>
<td>4 Rh. blumi</td>
<td>>28 days</td>
</tr>
<tr>
<td>Malema</td>
<td>Supadip</td>
<td>0.024</td>
<td>52% "</td>
<td>-</td>
<td>3 days</td>
</tr>
<tr>
<td>Kenjugu</td>
<td>Supadip</td>
<td>0.031</td>
<td>38% "</td>
<td>-</td>
<td>3 days</td>
</tr>
<tr>
<td>Control</td>
<td>Water</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>3 days</td>
</tr>
</tbody>
</table>

48
4.2 EXPERIMENTAL STUDY

4.2.1 Clinical Response to the Infection

The clinical response to the infection during the 90 days of the experiment is shown in Appendix 1 and summarized in Table 7.

The response was classified as mild, moderate, severe and very severe (Lweno et al., 1983)

Mild clinical response was characterized by presence of small amounts of dark brown (increased glandular secretion) or dirty grey discharges otoscopically seen lining the inner ear canal epithelium. The epithelium was with or without mild inflammation or ulcerations.

Moderate Clinical Response had changes visible on visual and otoscopic examination. It was characterized by partly or extensively hyperaemic, ulcerated or necrotic canal epithelium which was also lined with discharge. The discharge showed a tendency of accumulating in the deep canal lumen.

Severe Clinical Response was characterized by the discharge accumulating in the entire canal and extending outward to soil the inner surface of the pinna. The epithelium was extensively ulcerated and/or necrotic and in some case thickened. The ear was sometimes droopy and frequently flapped.

Very Severe Clinical Response showed aural discharge oozing out of the canal (otorrhea) and draining through the tragus
region of the pinna to matt the pinna edges, ear base, the cheek and even the neck region. The epithelium of the canal was extensively ulcerated and necrotic and in some cases proliferated and thickened. The ear was usually droopy and frequently flapped. The head was sometime tilted towards the affected side.

4.2.1.1 Group 1: Animals Infected with Rh. bovis

Three of the four animals in this group showed some clinical response to the infection. All developed bilateral infections. The response ranged from moderate to severe, to very severe otitis. The incubation period varied from 5 to 17 days with an average of 10 days. Except in one ear of animal B3 (with a course of 26 days), the infection persisted to the end of the experiment. Worms were present in the ears with clinical response throughout the observation period.

The clinical reactions started with hyperaemia and swelling of the mucosa of the osseous part of the ear canal, which was later covered with a waxy brown material (increased glandular secretion). The amount of the discharge increased with time. Initially the discharge was semifluid and dirty-brown in colour. This spread outward along the canal walls and lumen. Later, the discharge changed into foul smelling, bloody, tenacious, and dirty-grey or dark brown exudate which oozed out from the canal to matt the concave surface of the pinna (Fig.11 and 12).
Table 7 Clinical Response to the Infection for 90 Days.

<table>
<thead>
<tr>
<th>Group</th>
<th>animal</th>
<th>Ear</th>
<th>Incubation period-days</th>
<th>Clinical response</th>
<th>Course of the infection days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1</td>
<td>R</td>
<td>10</td>
<td>X ++</td>
<td>80 (Up to the end of expt.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>17</td>
<td></td>
<td>73 , ,</td>
</tr>
<tr>
<td>1</td>
<td>B2</td>
<td>R</td>
<td>5</td>
<td>X</td>
<td>85 , ,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>5</td>
<td></td>
<td>85 , ,</td>
</tr>
<tr>
<td>1</td>
<td>B3</td>
<td>R</td>
<td>14</td>
<td>+</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>7</td>
<td>X</td>
<td>83 , ,</td>
</tr>
<tr>
<td>1</td>
<td>B4</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B5</td>
<td>R</td>
<td>10</td>
<td>- ++</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B6</td>
<td>R</td>
<td>17</td>
<td>- ++</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B7</td>
<td>R</td>
<td>10</td>
<td>+ ++</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>10</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>B8</td>
<td>R</td>
<td>14</td>
<td>+ ++</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>14</td>
<td></td>
<td>76 (up to the end of expt.)</td>
</tr>
</tbody>
</table>

KEY

- **L** Left Ear
- **R** Right Ear
- **-** No clinical response (reaction)
- **+-** Mild clinical reaction
- **+** Moderate clinical reaction
- **++** Severe clinical reaction
- **X** Very (more) severe clinical reaction
In more severe cases, the discharge oozed out (otorrhoea) and drained through the tragus to stain the pinna edges, ear base, cheek and even the neck region. (Fig.13 and 14). At a more advanced stage the discharges changed into thick dirty grey, less smelling material which tended to accumulate at the concha and blocked the ear canal, (Fig.15). In more severe cases, bouts of copious blood tinged, pussy exudate resembling a ruptured abscess were occasionally seen exuding out of the canal. Wavy motions of the worms were observed in the discharges at all stages on visual and otoscopic examination. Rh. bovis at different developmental stages was recovered from all the ear swabs.

The hyperaemia and swelling of the osseous canal mucosa was followed by patchy ulceration of the epithelium under the discharges. The lesions extended outwards and became extensive with time to give a raw (red) surface. Later, the epithelial tissue became necrotic and in some areas thickened and folded, especially in the osseous part. However, lesions did not extend beyond the canal entrance. There was slight enlargements of the retropharyngeal lymph nodes on the side with severe otitis. Severely affected animals were found to frequently flap the ears which were droopy. (Fig.16). Apparently, there was no rise in body temperature or pharyngeal and central nervous impairements. Animal B2 which had bilateral more severe otitis lost condition towards the end of the experiment (Fig.16).
4.2.1.2 Group 2. Animals Infected with *Rh. blumi*

There were mild clinical reactions in all the group 2 animals. There were two unilateral and two bilateral response. The reaction was characterized by increased dark brown soft material (cerumine secretion) covering mainly the osseous canal from which worms were recovered. There were no lesions associated with the discharge. The incubation period ranged from 10 to 16 days with an average of 12 days and a course of between 3 and 76 days (Table 7). In one ear of animal B8 the reaction persisted up to the end of the experiment but in the rest, it receded as soon as the worms disappeared from the canals (Appendix 1 and 2).

4.2.1.3 Group 3. Control animals

There was no clinical response in all the group 3 animals. The mucous membrane of the entire ear canal remained pinkish, smooth and shiny but patchily covered with waxy dark brown cerumine secretion. No worm was recovered from any of the animals’ ear during the course of the experiment.
Fig. 11. Animal B2 left ear infected with *Rh. bovis* showing dirty grey discharge accumulating in the whole conchal region of the pinna and extending through the tragus.

Fig. 12. Animal B3 left ear infected with *Rh. bovis* showing thick discharge blocking the entrance to the ear canal.
Fig. 13. Animal B2 right ear infected with *Rh. bovis* showing copious bloody dark brown discharge oozing out of the canal soiling the whole concave surface of the pinna, pinna edges, ear base and the cheek.

Fig. 14. Animal B3 left ear infected with *Rh. bovis* showing the conchal region with discharge draining through the tragus to matt the ear base.
Fig. 15. Animal B1 right ear infected with *Rh. bovis* showing dirty grey discharge accumulating in the conchal region of the pinna and blocking the canal entrance.

Fig. 16. Animal B2 infected with *Rh. bovis* and developed bilateral otitis. The animal is emaciated and the more affected ear is droopy.
4.2.2 Gross Pathology

4.2.2.1 Group 1. Animals Infected with *Rh. bovis*

Except for animal B2 which was emaciated (Fig. 16) the routine postmortem examination did not reveal any pathological change in the body systems other than the ears of all other animals in this group. There was thick greyish discharge with wavy motions along the entire ear canal and the conchal region of the right ear of animal B1, both ears of B2 and the left ear of B3. The left ear of B1 had a slimy yellowish grey discharge lining the osseous canal. Under the discharge in all the affected ears was an ulcerated and necrotic epithelium. The lesions were more pronounced in the osseous part of the canal. Slight thickening of some portions of the osseous canal mucosa of right ear of animal B1 and left ear of B3 were observed. There were no morphological changes in the middle ear where an empty tympanic cavity lined by smooth shiny mucous membrane was observed in all the ears. The eustachian tube, the inner ear and the brain were also not affected. Both ears of animal B4 and the right ear of B3 had no pathological change.

4.2.2.2 Group 2. Animals Infected With *Rh. blumi*

Animal B5 died 50 days after infection and 26 days after eliminating the nematodes and recovering from a 3 day mild clinical reaction in the left ear. The animal died as a result of being crashed in a feeding trough by other
animals. No pathological changes associated with infection could be seen in any of the two ears of animal. The left ear of animal B8 had a slimy greyish exudate along the osseous canal walls. Underneath discharge the epithelium had areas of hyperaemia (re) and *Rh. blumi* was recovered from the discharge. There no pathological changes in the ears of the rest animals in the group.

4.2.2.3 Group 3. Control Animals

There were no pathological change in all the animals (B9, B10 and B12). The mucous membrane of canal remained pinkish, smooth and shiny but patchy with waxy dark brown cerumine secretion. No was recovered from the canals.

4.2.3 Histopathology

4.2.3.1 Group 1. Animals infected with *Rh. bovis*

The right ear of animal B1 and the left ear showed a proliferative canal mucosa reaction of the The cartilaginous canal epidermis was thickened and (Fig.17) or with excessive keratine layer and kerat hair follicles. The osseous part was more thickened five times its normal thickness. In some places thickened epithelium was disrupted and necrotic. The areas with dense aggregates of inflammatory cells (mainly neutrophils (Fig.19). The dermis was either
animals. No pathological changes associated with the infection could be seen in any of the two ears of the animal. The left ear of animal B8 had a slimy greyish brown exudate along the osseous canal walls. Underneath the discharge the epithelium had areas of hyperaemia (reddened) and Rh. blumi was recovered from the discharge. There was no pathological changes in the ears of the rest of the animals in the group.

4.2.2.3 Group 3. Control Animals

There were no pathological change in all the control animals (B9, B10 and B12). The mucous membrane of the ear canal remained pinkish, smooth and shiny but patchy stained with waxy dark brown cerumine secretion. No worm was recovered from the canals.

4.2.3 Histopathology

4.2.3.1 Group 1. Animals infected with Rh. bovis

The right ear of animal B1 and the left ear of B2 showed a proliferative canal mucosa reaction of the canal. The cartilaginous canal epidermis was thickened and devoid of (Fig.17) or with excessive keratine layer and keratinized hair follicles. The osseous part was more thickened up to five times its normal thickness. In some parts the thickened epithelium was disrupted and necrotic. There were areas with dense aggregates of inflammatory cells (Fig. 18) mainly neutrophils (Fig.19). The dermis was either fibrotic
or disrupted and highly infiltrated with inflammatory cells, more so in the osseous canal. The cells comprised of eosinophils, lymphocytes, plasma cells and macrophages (Fig.20). The inflammatory reaction did not go beyond the dermis.

Both ears of animal B2 and the left ear of B1 had focally or extensively desquamated, disrupted and necrotic epithelium. In the cartilaginous part, the epithelium was either focally affected or remained intact but was hyperkeratininized including the hair follicles. In most cases the osseous canal epithelium was extensively desquamated starting from its junction with the cartilaginous part (Fig.21). In some areas it was completely eroded or only a thin layer of one or two cells remained (Fig.22). Where erosion was not complete it was infiltrated with neutrophils, eosinophils and plasma cells mainly along the dermal papillae. The dermis under a damaged or intact epithelium (Fig.23) was in most parts disrupted and infiltrated with inflammatory cells. The papillary layer was infiltrated with eosinophils, neutrophils, plasma and mononuclear cells (Fig.24) while the reticular layer had dense aggregates of mononuclear cells (Fig.25. The reaction extended into the hypodermis (subcutis) of the osseous canal of the right ear of animal B2. The ceruminous glands had dilated lumens which were lined with columnar secretory cells and dilated ducts; an indication of hyperactivity (Fig.26). No nematodes were
observed in all layers of the mucosa of the affected canals.

The right ear of animal B3 which had recovered from a moderate clinical reaction 50 days before slaughter had patchy erosion and areas of intact keratinizing osseous epithelium. There was dermal reorganization represented by fibrosis and many capillaries but with few eosinophils and neutrophils (Fig. 27). Both ear canals of animal B4 which had not shown any clinical response had few eosinophils in the intact epidermis and some mononuclear cells in the dermis.

4.2.3.2 Group 2. Animals Infected with Rh. blumi

There were patches of disrupted and necrotic epidermis as well as cellular infiltration in the dermis of the left ear canal of animals B5, B7 and B8. The inflammatory cells comprised of neutrophils, macrophages, plasma cells, mononuclear cells and few eosinophils. The reaction was more severe in animal B7 where the affected areas had both the epidermis and dermis seriously disrupted and the dermis infiltrated with dense aggregates of cells mainly mononuclear cells (Fig. 28 and 29). The ceruminous glands were hyperactive in most of canals in the group. The other ears of the animals did not show any pathological change.

4.2.3.3 Group 3. Control Animals

There was no pathological change in the ear canals of all animals in this group. The cartilaginous portion of the
canal had a relatively thin keratinizing stratified squamous epithelium. It had many hair follicles which could extend deep into the hypodermis. The dermis had many sebaceous glands and few ceruminous glands or their ducts (Fig. 30). The ceruminous glands which were mainly found in the hypodermis (subcutis) had cuboidal and sometimes columnar secretory cells (Fig. 31). The osseous portion of the canal had a relatively thick non keratinizing stratified squamous epithelium. The portion had no hair follicles and it was non-glandular (Fig. 32). This observation conforms with the description of the normal histology of the ruminant ear canal (Trautmann, 1952).

4.2.4 Bacterial Isolation

The following bacteria (with the number of isolation per number of ears in brackets) were isolated from the ear canals of the experimental animals before infection: Beta-hemolytic *Bacillus* spp (15), *Streptococcus* spp - Beta hemolytic (4), Alpha hemolytic (7), and non hemolytic (1), *Staphylococcus aureus* (8), *Staph. albus* (2), *Staph. epidermidis* (1), *Pseudomonas* spp (4), *Esherichia coli* (2), and *Enterobacter* (1).

At the end of the experiment the isolates were: *Streptococcus* spp Alpha haemolytic (12), Beta haemolytic (2), non haemolytic (1), *Staphylococcus aureus* (11), *Staph. epidermidis* (1), Beta haemolytic *Bacillus* spp. (8), *E. Coli*
(5), \textit{Pseudomonas} spp (5), \textit{Micrococcus} spp (1), and \textit{Proteus vulgaris} (1).

The occurrence of the bacteria in each ear canal of the experimental animals before and at the end of the experiment is shown in Appendices 3 and 4.
Fig. 17. Cartilaginous part of the left ear canal of animal B3 infected with *Rh. bovis* showing a thickened epidermis (A) devoid of keratine layer (B) but with keratinized hair follicles (C). The dermis is infiltrated with inflammatory cells (D) (H & E)x40

Fig. 18. Osseous part of the right ear canal of animal B1 infected with *Rh. bovis*. Extremely thickenedepithelium (A) with areas of inflammatory cell infiltrations (B). The dermis is also infiltrated (C) (H & E)x40
Fig. 19. Osseous part of the right ear canal of animal B1 infected with *Rh. bovis*. An area of the thickened epithelium which is infiltrated with inflammatory cells, mainly neutrophils (H & E) x400.

Fig. 20. Osseous part of the right ear canal of animal B1 infected with *Rh. bovis*. The papillary layer of the dermis under the thickened dermis showing many eosinophils (A), plasma cells (B), lymphocytes (C) and macrophages (D) (H & E) x630.
Fig. 21. Junction of the cartilaginous (A) and the osseous part (B) of the left ear canal of animal B1 infected with *Rh. bovis*. The epithelium is extensively eroded (C) and the dermis is infiltrated with inflammatory cells (D) (H & E)x40.

Fig. 22. Osseous part of the left ear canal of animal B1 infected with *Rh. bovis*. The epithelium is desquamated leaving only a thin layer (A). The papillary layer of the dermis is infiltrated with eosinophils (B) macrophages (C) and lymphocytes (D) (H & E) x630
Fig. 23 Osseous part of the right ear canal of animal B2 infected with *Rh. bovis* showing a disrupted and inflammatory cell infiltrated dermis (B) between intact epidermis (A) and hypodermis (C) (H & E)x100

Fig. 24 Osseous part of the left ear of animal B3 infected with *Rh. bovis*. The epithelium is desquamated leaving only a thin layer (A). The papillary layer of the dermis is infiltrated with eosinophils (B), plasma cells (C), neutrophils (D), macrophages (E), and lymphocytes mainly towards the reticular layer. (H & E)x400
Fig. 25. Osseous part of the right canal of animal B2 infected with *Rh. bovis*. The reticular layer of the dermis is densely infiltrated with mainly mononuclear cells. (A). Few eosinophils are seen towards the less cellular papillary layer (B) (H&E) x 630.

Fig. 26. Ceruminous glands in the hypodermis of the left ear of animal B1 infected with *Rh bovis*. The secretory cells are columnar (A) the lumen is dilated and in some places filled with eosinophilic material (B) (H & E)x630.
Fig. 27 Osseous part of the right ear of animal B3 infected with *Rh. bovis* but had eliminated the worms 50 days before slaughter. The epithelium is keratinized (A) (normally is nonkeratinized) and the dermis is organizing represented by many capillaries (B) (H & E)x400

Fig. 28 Osseous part of the left ear canal of animal B7 infected with *Rh. blumi*. The epithelium is disrupted (A) and the dermis is infiltrated with inflammatory cells (B). The hypodermis (C) is not affected (H & E)x10
Fig. 29 Osseous part of the left ear of animal B7 infected with Rh. blumi. The dermis is infiltrated mainly with mononuclear cells (H & E)x630

Fig. 30 Cartilaginous part of the left ear canal of animal B9 showing the cornified stratified squamous epithelium (A), dermis (B) and hypodermis (C), hair follicle extending into the hypodermis (D), sebaceous glands (E) and cerumineous glands in the hypodermis (F) (H & E)x100
Fig. 31 Less active ceruminous glands from the left ear canal of animal B9 which was not infected. The glands have cuboidal secretory cells (A) (H & E) x630

Fig. 32 Osseous part of left ear canal of animal B11 showing a normal non cornified stratified squamous epithelium (A). A thin dermis (B) overlying a nonglandular hypodermis (C). The part of canal has no hair follicles (H & E) x10
5.1 DISCUSSION

One of the objectives of this work was to determine the prevalence of the disease in the local breeds of cattle from the hot dry and the cold humid areas of Kenya. During the study, a prevalence of up to 78.3% was recorded from the hot dry areas of Kajiado while a prevalence of up to 13.6% was recorded from the cold humid areas of Murang'a. There was a significant difference in the prevalence of the disease \((P<0.001)\) between the two areas. The disease was more severe in the hot dry areas than in the cold humid areas. The prevalence and severity of the disease observed in this study in the hot dry areas were comparable to those of the hot humid coastal areas coastal areas of Tanzania (Msolla, 1984) where the disease is known to be of more economic importance. This observation appears to be economically significant since the extensive semi arid and arid (hot dry) areas of East Africa are predominantly populated with the more susceptible local breeds of cattle. For instance in Kenya the areas which form the Kenyan rangelands account for 88% of the country’s land areas and more than half of the country’s cattle are found in these areas. (Bekure et al, 1991).

High temperatures and moisture contents in the ear canal are believed to be among the predisposing factors of otitis externa in domestic animals and man (Hayes et al,
These conditions are believed to stimulate excessive cerumine secretion in the canal in which the saprophytic bacteria and parasites multiply to a pathogenic level. In the hot dry areas, animal dipping for tick control results in increase in the ear canal moisture contents which together with the high ambient temperatures provide the favourable environment for the development of the disease. This is supported by the high incidences encountered in the dipped animals in the areas. However, the role of the increased moisture content in the development of the disease may be confirmed by reproducing the disease under controlled ear canal moisture contents.

During the study no case with central nervous symptoms, a fatal stage of the disease, was observed although some cattle owners in Kajiado reported to have lost cattle through this disease. Infected animals showed loss of body condition which may have been as a result of reduced grazing caused by fly worry and painful inflammatory changes in ear canal. Poor body condition predisposes the animal to intercurrent diseases. Farmers' experiences in Kajiado suggest that infected animals are more susceptible to East Coast Fever than uninfected ones.

The infection was absent in the exotic dairy animals in the farms studied in Kajiado and Murang'a. The animals in these farms were managed in fenced areas without contact with other animals in the vicinity. The absence of the disease therefore could be as a result of management rather
than the susceptibility. Lweno et al, (1983) and Msolla et al, (1986) have reported occurrence of the disease in exotic dairy animals.

83% of the infected animals were found to have nematodes in the ears. This indicates that the otitis observed was parasitic. Some chronic cases were without nematodes. Higher proportion of cases without nematodes were observed in the cold humid areas (26.3%) compared to the hot dry areas (16.2%). The difference may be due to lowered nematode activity in the cold areas. Occasionally in chronic cases the nematodes are eliminated (Msolla et al, 1986). The elimination may be a result of the host immune response or due to excessive accumulation of exudate in the canal amplified by the secondary bacteria infection thereby creating an unfavourable environment for the nematodes. Such observation has been reported in parasitic otitis in dog and sheep (Jubb et al, 1985, Morgan, 1992). Many animals without clinical otitis were found to have nematodes in their ear canals. Msolla, (1984) reported a morbidity of up to 75-80% in a herd with as low as 4-5% clinical cases. This observation suggests that presence of other predisposing factors are important for an infected ear to develop a clinical parasitic otitis.

Rhabditis nematodes were found to be associated with the infection. Unlike in other parasitic Rhabditis such as Rh. strongyloides infection in which only the larval stage is parasitic (Levine et al, 1950, Scott, 1988), all
developmental stages were present in all the ear swab samples examined. This implies that the life cycle of the worms is completed within the host ear. As a result of this infected animals serve as sources of infection to others and of environmental contamination over a long period of time. *Rhabditis bovis* and *Rh. blumi* were identified during the study. These are the same species found to be associated with the infection in different parts of Tanzania (Msolla et al., 1986). This observation may suggests that the two could be the main species associated with the disease in East Africa and possibly in Africa as whole.

There was a significant difference in the occurrence of the two species between the hot dry areas and the cold humid areas. There was also a difference in the severity of the disease they caused. *Rh. bovis* alone was found in the hot dry areas but both species were found in the cold humid areas where they occurred separately or in mixed infection. *Rh. blumi* is known to flourish well in moist soil and manure which are considered to be its reservoirs. Its absence from the hot and dry areas may be attributed to the harsh dry environment which dominates a long period of the year. On the other hand in the cold and humid areas the species can survive and breed in the moist soil, manure and garbages which do not easily dry. Msolla et al. (1989) have demonstrated the occurrence of large numbers of the species in soil and manure from sleeping and collecting pens especially during rainy season. They also observed a
positive correlation between the number of nematodes and the moisture content of the manure and soil. Rh. bovis seems to depend on means other than manure and soil as its reservoir.

The role of Rh. blumi in the development of the disease may be less significant when compared to Rh. bovis. In this study it was found alone only in mild and chronic cases. In mixed infection it occurred in lower proportion than the Rh. bovis. These observations are in agreement with those of Msolla et al (1986). The free-living species may be a mere contaminant of the chronic otitis where the pathogenic Rh. bovis has been eliminated. On reaching the bacterial infected wounds, the worms proliferate by feeding on the bacteria and debris. Similarly it can contaminate the cerumine contained in the healthy canal where its irritation results into mild inflammatory changes. Saprophilus Rhabditis species are known to occur where bacteria are plentiful on which they feed. It has been shown that their breeding depends on ingestion of living bacteria (Goodey, 1963). It is possible that like Rh. axei a pseudoparasite of animal and human (Levin et al, 1963), Rh. blumi can also be found in other body parts which come in contact with the contaminated soil. It is also possible that it may contaminate wounds in body parts other than the ear. Attempts to isolate the worms from other parts of the animal body may be carried out to confirm this.

Rhabditis bovis was found to cause more severe otitis in the hot dry areas than in the cold humid areas. The
severity in the hot dry areas was comparable to those of hot humid areas. It seems that, low ambient temperatures in the cold humid areas have a negative effect on the activities and multiplication rates of the ectoparasite. Further more, low temperatures have less stimulating effect on the ear canal glandular secretion which is required to create the favourable environment for the development of the disease.

Rh. bovis was not isolated from any of the dips studied while Rh. blumi was recovered from one Supadip dip which was 66% under strength. Almost all the dips studied were muddy and under strength. The failure to recover the worms could be a result of inadequate stirring of the dipwash during sample collection. Although Msolla (1984) reported occurrence of the worms in all layers of dipwash, it has been observed during this study that the worms usually settle at the bottom where they may become trapped in the mud.

When introduced in the dip samples obtained from the field, Rh. bovis survived for an average of 3 days in over 30% under strength Supona and Supadip but survived for only 8 hours in 19% under strength Supona. Rh. blumi survived and even multiplied in over 50% under strength Supadip. In the correct strength solutions of the two acaricides which are different preparations of chlorfenvinphos, both species survived for less than two hours. Chlorfenvinphus is a member of group two organophosphate insecticide. Organophosphates are known to have anthelmintic activity and some have been used for this purpose (Brander and Pugh,
1977). This study shows that understrength muddy dips of the two acaricides are good reservoirs of *Rh. blumi*. However, the survival time of *Rh. bovis* is long enough for the nematodes to be transmitted into a healthy ear during dipping. Moreover, the survival limit does not seem to be a result of the acaricide effect, for the same survival time is observed in water.

Rh. bovis was found to survive for an average of 3 days in Delnav dip samples which were between 15% understrength and 30% overstrength and in correct strength fresh preparation. *Rh. blumi* survived for more than 28 days in such fresh preparation. This shows that Delnav (Dioxathin) a member of group one organophosphates has no effect whatsoever on the worms. Farmers in Kajiado complained that Delnav was responsible for the disease. However, the use of the acaricide has been prohibited in many parts of Kenya due to the development of tick resistance against it. The survival rate of *Rh. blumi* observed in this study is similar to that of what was referred to *Rh. bovis* in toxaphene, (a member of chlorinated hydrocarbons) observed by Msolla, (1984). From this study it seems that they were dealing with *Rh. blumi* rather than *Rh. bovis*. As low as 52% understrength Amitraz adiamide dipwash (Triatix) was found to be lethal to the worms. Amitraz adiamide is a member of Armidin group of insecticides. Both species died within 10 minutes in the correct strength fresh preparation of this acaricide.
In all cases larvae were relatively more resistant to the acaricides than the adults. *Rhabditis* larvae have a relatively thicker cuticle which is less permeable to water soluble substances than the adults (Skryabin, 1984). In an adverse condition they develop an even thicker coat to become survival larvae which can survive longer (Brockelman and Jackson, 1974).

In this study it has been observed that Delnav and understrength Supona and Supadip dips serve as reservoirs both species. Msolla *et al* (1987) tried to control the disease through treating toxaphene dips with nicotine. The treatment killed the worms in the dips and from the infected ears during dipping. The approach seems to be more advantageous as it treats the reservoir and the infected and carrier animals at the same time. However it is known that nicotine has a narrow range of safety. (Brander and Pugh, 1977). It is also important to know its efficacy when combined with acaricides other than toxaphene. Use of amitraz diamide and correct concentrations of Chlorfenvinphos dips may have the same results. Topical application of these acaricides especially of amitraz diamide to cleaned ears can be tried.

During the experimental study to determine the pathogenicity of the two nematode species, three of the four cattle infected with *Rh. bovis* developed a moderate to very severe bilateral otitis within an average of 10 days. Lweno *et al* (1983) in their study, reported an incubation period
of 14 days. The infection persisted up to the end of the 90 days period of the experiment. Worms were present in the infected ears all along the course of the infection. The severity of the disease, however, decreased towards the end of the experiment. More lesions were found in the inner canal unlike in the field cases where the lesions can extend outwards up to the conchal region. This may be due to the absence of flies which are known to enhance the extent of the damage (Lweno et al 1983). The experiment was terminated before the disease could enter the chronic stage. The clinical, pathological and histopathological changes observed in these animals were similar to those observed in a field study by Lweno et al (1983). This confirms that Rh. bovis is a pathogenic species associated with the disease.

No animal developed clinical otitis in all the four cattle infected with Rh. blumi although all of them showed a unilateral or bilateral increased cerumine secretion from which the worms were recovered. The reaction commenced within an average of 12 days following infection but receded soon after the disappearance of the worms from the canal. This may imply that the species is less or not pathogenic. It seems that the presence of the worms in the ear canal causes irritation which stimulates excessive glandular secretion. The increased cerumine supports more growth of the aural bacterial flora whose activities changes it into a soft dark brown material. The saprophitic worms then proliferate by feeding on the bacteria and debris.
The reaction persisted up to the end of the experiment only in the left ear of animal B8. At postmortem, the ear had a hyperaemic and slight patchy erosion of the epithelium. *Proteus vulgaris* and alpha-hemolytic *Streptococcus* spp. were isolated from the ear. On histological examination, the left ears of animals B5, B7 and B8 which had alpha-hemolytic *Streptococcus* spp and *Staphylococcus aureus*, showed patches of disrupted and necrotic epithelium. The dermis had areas of inflammatory cell infiltration mainly neutrophils, mononuclear cells, macrophage and few eosinophils. This observation and the mild clinical reactions found to be associated with *Rh. blumi* in the field cases may be a result of bacteria rather than the nematode. The bacteria proliferate to a pathogenic level under the favourable ear canal created by the nematode irritation. The bacteria have been reported in animal otitis, (Fraser, 1961; Jensen et al. 1983).

Several pyogenic and putrefying bacteria were isolated from the ears with or without otitis in all the experimental animals at the end of the experiment. Most of these were present in the ears even before infection. The bacteria caused suppurative and necrotizing inflammation in the animals infected with *Rh. bovis* but failed to produce the same effect in animals infected with *Rh. blumi* and in control animals. Lweno et al, (1983) and Msolla et al, (1986) in their attempt to reproduce the disease in cattle and rabbits respectively, observed that addition of bacteria
in the *Rh. bovis* inocula made little difference in the development of the disease. Normally the intact skin is impervious to many bacteria. The bacteria take advantage of the worm damaged skin to complicate the infection. They are also responsible for the reported otitis media and meningoencephalitis which is the cause of death in the disease. (Lweno *et al*, 1983). Further more the bacteria are responsible for the chronic cases where the nematode has been eliminated, (Msolla *et al*, 1986).

The clinical, pathological and histopathological changes observed in *Rh. bovis* infected group appear to be in agreement with the pathogenesis of the disease as proposed by Lweno *et al*, (1983). Initially the worms cause irritation to the canal walls resulting in increased glandular secretion. This secretion is soft and dark brown in colour resembling a bloody discharge. The worms then erode layer after layer of the epidermis. The non cornified osseous epithelium appears to be more susceptible to the worm attack. The bacterial flora excessively multiply in the increased cerumine secretion from where they invade the worm caused wounds to produce the necrotizing or suppurative inflammation. The bacterial invasion extends deep as the worms continue to erode the surface. This leads to haemorrhages hence the blood tinged discharge observed in some cases. In the right ear of animal B2 the inflammatory changes were found to extend deep into the hypodermis suggesting that with time the lesion could extend across the
entire canal wall to affect the cartilaginous or the bony walls. The worms were not seen at any level of the canal wall, an indication that they do not burrow into the tissue but erodes it from the surface. It is not known whether the erosion is physical or enzymatic.

The histological changes observed included epidermal necrosis, erosion, proliferation or hyperkeratosis. There was dermal necrosis, fibrosis and inflammatory cell infiltration. Inflammatory cells commonly observed were eosinophils and neutrophils in the epidermis and dermal papillary layer, and plasma cells, macrophage and large lymphocytes mainly in the reticular layer. Most of these changes are not specific to the worm infection. They have been reported in bacteria otitis in different animals. (Fraser, 1961; Jubb et al., 1985; Scott, 1988). However, the presence of eosinophil seems to be associated with the worms. The cells are known to be part of the immune response to parasitic infections (Wakelin, 1987; Roitt, 1988) This may suggest that the disappearance of the worms in the chronic cases is a result of host immune response.

5.2 CONCLUSION

From this study it is concluded that Bovine Parasitic Otitis is as prevalent and severe in the hot dry (semi arid) areas as it is in the hot humid (coastal) areas but it is less so in cold humid areas. The otitis externa observed in the areas of study was a nematode otitis since more than 70%
of the cases had nematodes. *Rh. bovis* and *Rh. blumi* are the nematode species associated with the infection in East Africa but *Rh. blumi* occurs in humid rather than in dry areas. Delnav and understrength Chlorfenvinphos dips are better reservoirs of *Rh. blumi* but can act as source of infection of both species. Amitraz a diamide (Triatix) and the recommended concentration of Chlorfenviphos are lethal to both species. *Rh. bovis* is a pathogenic species but its pathogenicity seems to be affected by low ambient temperatures. However, its occurrence in many cases without clinical otitis suggests that some predisposing factors are necessary for the disease to develop. *Rh. blumi* is a less pathogenic free-living species whose occurrence in ears with or without otitis may be a result of by chance contamination.

5.3 RECOMMENDATIONS

In view of the results observed from this study it is recommended that:

1. More studies be carried out to establish the distribution and prevalence of the disease in various parts of the country.

2. More studies be carried out to establish the role played by the various proposed predisposing factors such as ear moisture content, wounds and specific aural flora, in the development of the disease.

3. Field trials of the treatment and control of the disease using the lethal acaricides and antibiotic be
carried out.

4. Studies be carried out to determine the host immune response to the infection with a view to develop an immunological control measure.

5. Studies be made to determine the possible occurrence of *Rh. blumi* in animal body parts other than the ear in order to establish whether the species has a predilection to the ear or its occurrence there is a by chance contamination.
REFERENCES

APPENDIX 1: CLINICAL RESPONSE TO THE INFECTION IN A PERIOD OF 90 DAYS

<table>
<thead>
<tr>
<th>GROUP</th>
<th>ANIMAL</th>
<th>EAR</th>
<th>DAY OF EXAMINATION</th>
<th>RESPONSE</th>
<th>DAY OF EXAMINATION AFTER INFECTION</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
<td>R</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>B8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>B9</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>B10</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>B11</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Note: The response includes various symbols representing different stages of response, and the table provides a clear and concise representation of the clinical responses over a 90-day period for each animal in the study.
<table>
<thead>
<tr>
<th>GROUP</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIMAL</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>EAR</td>
<td>R</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>D.A.I.</td>
<td>52</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

KEY

- **R** Right ear
- **L** Left ear
- **-** No clinical response
- **+-** Mild clinical response
- **++** Moderate clinical response
- **+++** Severe clinical response
- **+++** Very severe clinical response

Group 1 Animals infected with *Rh. bovis*
Group 2 Animals infected with *Rh. blumi*
Group 3 Control animals
APPENDIX 2. WORM ISOLATION FROM THE INFECTED EARS DURING THE 90 DAYS

<table>
<thead>
<tr>
<th>GROUP</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIMAL</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>EAR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
</tr>
<tr>
<td>DAY OF EXAMINATION AFTER INFECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>8</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>9</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

KEY
- R: Right ear
- L: Light ear
- A: Worms Absent
- P: Worms Present

Group
1. Animals infected with *Rh. bovis*
2. Animals infected with *Rh. blumi*
3. Control animals
<table>
<thead>
<tr>
<th>Animal</th>
<th>Bacteria in the right ear</th>
<th>Bacteria in the left ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Staphylococcus aureus</td>
<td>Corynebacterium pyogenes</td>
</tr>
<tr>
<td></td>
<td>Micrococcus spp</td>
<td>Alpha-haemolytic Streptococcus spp</td>
</tr>
<tr>
<td></td>
<td>Beta-haemolytic Streptococcus spp</td>
<td>Beta-haemolytic Bacillus spp</td>
</tr>
<tr>
<td>32</td>
<td>Alpha-haemolytic Streptococcus spp</td>
<td>Pseudomonas spp</td>
</tr>
<tr>
<td></td>
<td>Beta-haemolytic Bacillus spp</td>
<td>Alpha-haemolytic Streptococcus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>33</td>
<td>E. Coli</td>
<td>E. coli</td>
</tr>
<tr>
<td></td>
<td>Beta-haemolytic Streptococcus spp</td>
<td>Alpha-haemolytic Bacillus spp</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Enterobacter</td>
<td>E. Coli</td>
</tr>
<tr>
<td></td>
<td>non haemololytic Streptococcus spp</td>
<td>Beta-haemolytic Bacillus spp</td>
</tr>
<tr>
<td></td>
<td>Beta-haemolytic Bacillus spp</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Pseudomonas spp</td>
<td>Alpha-haemolytic Streptococcus</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>36</td>
<td>Pseudomonas mallei</td>
<td>Alpha-haemolytic Streptococcus</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td>Beta-haemolytic Bacillus</td>
</tr>
<tr>
<td>37</td>
<td>Pseudomonas spp</td>
<td>Alpha-haemolytic Streptococcus</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>38</td>
<td>Pseudomonas mallei</td>
<td>Proteus vulgaris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alpha-haemolytic Streptococcus</td>
</tr>
<tr>
<td>39</td>
<td>Alpha-haemolytic Streptococcus spp</td>
<td>Beta-haemolytic Bacillus</td>
</tr>
<tr>
<td></td>
<td>Beta-haemolytic Bacillus spp</td>
<td>Staphylococcus epidermidis</td>
</tr>
<tr>
<td>40</td>
<td>Alpha-haemolytic Streptococcus spp</td>
<td>Alpha-haemolytic Streptococcus</td>
</tr>
<tr>
<td></td>
<td>Beta-haemolytic Bacillus spp</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>E. Coli</td>
<td>E. Coli</td>
</tr>
<tr>
<td></td>
<td>Alpha-haemolytic Streptococcus</td>
<td>Staphylococcus aureus</td>
</tr>
</tbody>
</table>
APPENDIX 4. BACTERIA ISOLATED FROM THE EARS AT THE END OF THE EXPERIMENT

<table>
<thead>
<tr>
<th>Animal</th>
<th>Bacteria in the right ear</th>
<th>Bacteria in the left ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Beta-haemolytic Streptococcus spp
Beta-haemolytic Bacillus spp</td>
<td>Beta-haemolytic Streptococcus spp
Beta-haemolytic Bacillus spp
Staphylococcus aureus</td>
</tr>
<tr>
<td>B2</td>
<td>B-haemolytic Bacillus spp</td>
<td>Beta-haemolytic Bacillus spp
Staphylococcus albus</td>
</tr>
<tr>
<td>B3</td>
<td>Beta-haemolytic Streptococcus spp
Staphylococcus aureus</td>
<td>E. Coli
Alpha-haemolytic Streptococcus spp</td>
</tr>
<tr>
<td>B4</td>
<td>Non haemolytic Streptococcus spp
Beta-haemolytic Bacillus spp
Staphylococcus albus</td>
<td>E. Coli
Beta-haemolytic Bacillus spp</td>
</tr>
<tr>
<td>B5</td>
<td>Pseudomonas spp
Staphylococcus aureus</td>
<td>Alpha-haemolytic Streptococcus spp
Beta-haemolytic Bacillus spp</td>
</tr>
<tr>
<td>B6</td>
<td>Beta-haemolytic Bacillus spp
Staphylococcus aureus</td>
<td>Alpha-haemolytic Streptococcus spp
Beta-haemolytic Bacillus spp</td>
</tr>
<tr>
<td>B7</td>
<td>Beta-haemolytic Bacillus spp
Staphylococcus aureus
E. Coli</td>
<td>Beta-haemolytic Bacillus spp
Staphylococcus epidermidis</td>
</tr>
<tr>
<td>B8</td>
<td>Pseudomonas spp</td>
<td>Beta-haemolytic Bacillus spp</td>
</tr>
<tr>
<td>B9</td>
<td>Beta-haemolytic Bacillus spp
Alpha-haemolytic Streptococcus spp</td>
<td>Alpha-haemolytic Streptococcus spp
Beta-haemolytic Bacillus spp</td>
</tr>
<tr>
<td>B10</td>
<td>Pseudomonas spp
Staphylococcus aureus</td>
<td>Pseudomonas spp
Alpha-haemolytic Streptococcus spp
Staphylococcus aureus</td>
</tr>
<tr>
<td>B11</td>
<td>Beta-haemolytic Bacillus spp
Alpha-haemolytic Streptococcus spp</td>
<td>Beta-haemolytic Streptococcus spp
Staphylococcus aureus</td>
</tr>
</tbody>
</table>