Longitudinal Assessment of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Gamma Interferon Responses during the First Year of Life in HIV-1-Infected Infants

Barbara L. Lohman, Jennifer A. Slyker, Barbra A. Richardson, Carey Farquhar, Jenniffer M. Mabuka, Christopher Crudder, Tao Dong, Elizabeth Obimbo, Dorothy Mbori-Ngacha, Julie Overbaugh, Sarah Rowland-Jones and Grace John-Stewart

Updated information and services can be found at: http://jvi.asm.org/content/79/13/8121

REFERENCES

These include:

This article cites 63 articles, 44 of which can be accessed free at: http://jvi.asm.org/content/79/13/8121#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), [more»](http://journals.asm.org/site/misc/reprints.xhtml)

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Longitudinal Assessment of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Gamma Interferon Responses during the First Year of Life in HIV-1-Infected Infants

Barbara L. Lohman, Jennifer A. Slyker, Barbra A. Richardson, Carey Farquhar, Jennifer M. Mabuka, Christopher Crudden, Tao Dong, Elizabeth Obimbo, Dorothy Mbori-Ngacha, Julie Overbaugh, Sarah Rowland-Jones, and Grace John-Stewart

Department of Paediatrics, University of Nairobi, Nairobi, Kenya; Departments of Epidemiology, Biostatistics, and Medicine, University of Washington, Seattle, Washington; Divisions of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington; and Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, England

Received 3 December 2004/Accepted 13 March 2005

Human immunodeficiency virus type 1 (HIV-1) infection results in different patterns of viral replication in pediatric compared to adult populations. The role of early HIV-1-specific responses in viral control has not been well defined, because most studies of HIV-1-infected infants have been retrospective or cross-sectional. We evaluated the association between HIV-1-specific gamma interferon (IFN-γ) release from the cells of infants of 1 to 3 months of age and peak viral loads and mortality in the first year of life among 61 Kenyan HIV-1-infected infants. At 1 month, responses were detected in 7/12 (58%) and 6/21 (29%) of infants infected in utero and peripartum, respectively (P = 0.09), and in ~50% of infants thereafter. Peaks of HIV-specific spot-forming units (SFU) increased significantly with age in all infants, from 251/10⁶ peripheral blood mononuclear cells (PBMC) at 1 month of age to 501/10⁶ PBMC at 12 months of age (P = 0.03), although when limited to infants who survived to 1 year, the increase in peak HIV-specific SFU was no longer significant (P = 0.18). Over the first year of life, infants with IFN-γ responses at 1 month had peak plasma viral loads, rates of decline of viral load, and mortality risk similar to those of infants who lacked responses at 1 month. The strength and breadth of IFN-γ responses at 1 month were not significantly associated with viral containment or mortality. These results suggest that, in contrast to HIV-1-infected adults, in whom strong cytotoxic T lymphocyte responses in primary infection are associated with reductions in viremia, HIV-1-infected neonates generate HIV-1-specific CD8⁺-T-cell responses early in life that are not clearly associated with improved clinical outcomes.

CD8⁺ cytotoxic T lymphocytes (CTL) are responsible for clearing acute viral infections such as cytomegalovirus (CMV) and measles virus and play variable roles in chronic viral infections, depending on the site and degree of ongoing viral replication (reviewed in references 38 and 64). The CD8⁺ CTL response to human immunodeficiency virus (HIV) has been extensively studied in humans and in the rhesus macaque-simian immunodeficiency virus (SIV) model for association with virus levels and disease progression. HIV-1- and SIV-specific CD8⁺-T lymphocyte numbers rise during acute infection, and the peak number of CD8⁺-T cells coincides with the decline in plasma viremia (30, 31, 48). In the SIV model, the depletion of CD8⁺-T lymphocytes in either acute or chronic infection leads to an increase in viral replication which is curtailed by the regeneration of CD8⁺-T cells (26, 56). The conclusion that HIV-1-specific CTL are an important component of the host immune response to infection is supported by several notable findings. First, antiviral CTL, frequently gag-specific, are associated with control of HIV-1 viral replication in adults and children of ~10 years old (10, 13, 19, 39, 40, 45). Second, levels of circulating HIV-1-specific CTL are maintained in long-term nonprogressors (24, 51). Finally, in both acute and chronic HIV-1 infections, HIV isolates have evolved mutations allowing escape from CTL recognition, indicating immune pressure on viral replication (6, 22, 47).

The study of HIV-1-specific CD8⁺-T-cell responses in vertically infected infants is complicated by several factors absent in horizontal HIV-1 transmission. The patterns of HIV-1 peak and set-point plasma viral loads are very different in adults and infants (49). In infants, the levels of HIV-1 plasma viremia are persistently high, with declines not seen until the second year of life (17, 18, 37). In the absence of antiretroviral therapy, vertically infected infants have a bimodal distribution of disease progression, with approximately 25% progressing to AIDS within 1 year of life (reviewed in reference 35). Factors that may influence the levels of viral replication and disease progression in infants include the phenotype of the transmitted virus, the high number of target cells available for HIV-1 infection, and an immature immune system. Infants are likely infected with a viral variant modified by maternal immune pressure due to the half-match in major histocompatibility complex alleles (21, 55). In addition, infants have high levels of thymic output, and their immune systems are predominantly naïve (8, 15, 57), although the role of the thymus in the disease progression of infants is not clear.
progression of HIV-1-infected infants is not well understood (7). The ability of the neonate to respond effectively to infection is thought to be limited by the number of circulating mature T and antigen-processing cells (50, 54). Cellular immune responses in HIV-1-infected infants have been inconsis-
tently detected in infants younger than 6 months (33, 34, 36, 46, 61). The paucity of CTL responses in infants less than 1 year old has been suggested (i) to be due to diminished Th1 re-
sponses, in particular a deficiency in gamma interferon (IFN-γ) secretion (58, 62, 63) or (ii) to be influenced by age, CD4 counts, and antigen processing (53). The interpretation of the earlier reports is limited by the lack of longitudinal data and the imprecise detection of the timing of infection in the infants.

We had the opportunity, with a prospective observational cohort of infants born to HIV-1-infected women, to identify infants infected before 1 month of life and to measure HIV-
1-specific CD8+ T-cell responses together with viral loads over the first year of life. We hypothesized that sustained high HIV-1 viral loads observed in perinatal transmission were con-
sistent with a deficiency in virus-specific CD8+ T-cell re-
sponses. We examined the HIV-1-specific IFN-γ release from CD8+ T cells at one to five time points during the first year of life of 61 Kenyan infants diagnosed with HIV-1 infection at or before the first month of life and investigated the relationship between the timing and presence of early anti-HIV-1 CD8+- T-cell responses and peak viral loads and mortality in the infants.

MATERIALS AND METHODS

Patient cohort. As part of a larger cohort of infants born to HIV-1-infected women between 1999 and 2003, 61 infants with HIV-1 RNA or DNA detected in blood obtained during the first month of life were included in this cohort. Details of the larger cohort of infants born to HIV-1-infected women have been pre-
sent elsewhere (20, 41). Written informed consent was obtained from all mothers on behalf of themselves and their infants. Mothers were recruited during pregnancy and were provided with zidovudine beginning between the 34th and 36th weeks of gestation for the prevention of infant HIV-1 infection (59).

Infants were breast or formula fed as per maternal preference. Infants were examined by clinicians, and 1 to 3 ml of peripheral blood was obtained at birth and at months 1, 3, 6, 9, and 12. Seven infants born to HIV-1-seronegative women were included as controls and were bled at 3 months of life. This research complied with all U.S. and Kenyan guidelines and policies.

Blood collection. Freshly collected EDTA-anticoagulated blood was cen-
trifuged for 10 min at 1,800 rpm to separate plasma, which was aliquotted and stored at −80°C. The remaining blood was then diluted with an equal volume of RPMI 1640 (Gibco-BRL), layered on a Ficol gradient (Lymphocyte Separation Me-
dium; Organon Teknika, West Chester, PA), and centrifuged for 30 min at 2,000 rpm. Peripheral blood mononuclear cells (PBMC) at the interface of the gradi-
ent were isolated, washed in RPMI 1640, and used directly in the enzyme-linked immunospot (ELISPOT) assay. The mean numbers ± standard errors of the means of PBMC recovered at months 1, 3, 6, 9, and 12 were (13.6 ± 1.0) × 106, (17.7 ± 1.1) × 106, (18.6 ± 1.7) × 106, (16.8 ± 1.6) × 106, and (15.5 ± 1.5) × 106, respectively.

HIV-1 diagnosis and determination of timing of infection. Infant HIV-1 in-
fection status was determined by PCR amplification of HIV-1 gag DNA se-
quences from dried blood spotted on filter paper (44) or by quantitative analysis of infant plasma HIV-1 RNA using a transcription-mediated amplification method sensitive for the detection of multiple HIV-1 subtypes (Gen-Probe HIV-1 viral load assay) (43). Results relative to HIV RNA copies/ml plasma were considered positive if there were ≥100 copies/ml or, in cases where less than 500 nl was available for testing, if there were ≥50 RNA copies per reaction. The timing of an infection was categorized as in utero if the specimen collected within the first 48 h of life was positive for either HIV-1 DNA or HIV-1 RNA. The timing of infection was defined as peripartum if plasma HIV-1 RNA was undetectable within the first 48 h of life and positive at 1 month of age. Quan-
titative plasma viral loads were determined using the Gen-Probe assay.

HLA typing. Molecular HLA typing was performed on DNA extracted from 5 × 106 infant PBMC using amplification refractory mutation system PCR with sequence-specific primers designed for East African populations (9).

Peptides. Sixty-eight peptides spanning five regions of HIV-1 were synthesized by Fmoc (9-fluorenylmethoxy carbonyl) chemistry at the Peptide Core Facility at The Weatherall Institute of Molecular Medicine (Tao Dong, Oxford University). The peptides were chosen based on predefined CTL epitopes of the prevalent HIV-1 clades in Kenya (A and D). Twenty-seven peptides were from gag, 18 were from pol, 19 were from env, 13 were from nef, and 1 was from rev (Table 1). Epitopes were chosen based on responses previously reported in HIV-1 infection and included those present in acute infection, long-term nonprogressors, and those associated with viral control (29). These peptides bind 29 common HLA class I alleles (11 HLA-A, 15 HLA-B, and 2 HLA-C) across the East African populations. The identities of peptides tested for each individual were based on the infant's HLA type. In the event of a limited number of cells, peptides were prioritized to test a complete panel for each HLA allele.

IFN-γ ELISPOT assay. An ELISPOT assay was used to detect HIV-1-specific IFN-γ release from PBMC following overnight incubation with peptides. Briefly, 96-well Millipore plates (MAIP45; Millipore SA, Molsheim, France) were coated with 7.5 μg monomodal antibody to IFN-γ (1-D1K; Mabtech Ab, Nacka, Swe-
den) at 4°C at 37°C. Excess antibody was removed by washing with RPMI 1640 and blocked with RPMI 1640 containing l-glutamine and supple-
mented with 10% fetal calf serum (all from Gibco-BRL), designated R10, for 30 min at room temperature before cells were added. Duplicate wells containing 2 × 105 PBMC/well were stimulated with 20 μg/ml peptide, 10 μg/ml phyto-

e trad: Rickettsia prowazekii, Rehovot, Israel) followed in sequence by the application of biotinylated anti-IFN-γ antibody (1:1,000; 7-B6-1 biotin; Mabtech) for 3 h at room temperature, washing, and the application of streptavidin-alanine phosphatase (1:1,000; Mabtech) for 1.5 h at room temperature. After the final washing, spot-forming units (SFU) were visualized by the addition of alkaline phosphatase (Bio-Rad Laboratories, Hercules, CA) for approximately 10 min or until an intense blue reaction was visible in the wells stimulated with PHA. Additional color development was prevented by washing the plates under running water. Plates were allowed to dry overnight before reading. Plates were read visually until January 2001, after which an automated ELISPOT reader was used (Autoimmun Diagnostika, Straelen, Germany). The number of HIV-specific SFU per 106 cells was de-

fined as the average number of SFU per 106 cells from peptide-stimulated wells minus the average number of SFU per 106 cells in wells containing R10 (back-
ground control). The following criteria were used to determine a positive assay: (i) a response to PHA of ≥100 SFU after the subtraction of the background, (ii) the number of HIV-specific SFU per 106 cells being greater than or equal to 50, and (iii) the number of SFU in peptide-stimulated wells being greater than or equal to two times the number of background control SFU (4). The qualities of the ELISPOT responses were compared in two ways: relative to the mean of positive responses and relative to the peak of positive responses.

Detection of antigen-specific CD8+ T cells. PBMC from an infant expressing HLA-A2 and -B8 were stained with phycoerythrin-conjugated-HLA class I tet-
ramer complexes refolded with either HIV-1 nef-FLKEKGGL (B8-nef) or CMV pp65-MLVPMMATV (A2-CMV) (Tao Dong, Oxford University). Briefly, for each stain, 150 μl of whole blood was incubated with phycoerythrin-conju-
gated tetramer for 15 min at 4°C, followed by the addition of peridinin chlorophyll protein-labeled anti-CDS and fluorescein isothiocyanate-labeled anti-CD45RO (both from Becton Dickinson, San Diego, CA) for an additional 15 min. Three milliliters of FACSLyse solution (Becton Dickenson) was added per tube, and the tubes were left for 5 min at room temperature, after which time the tubes were centrifuged for 5 min at 1,500 rpm. The cell pellet was washed once in phosphate-buffered saline containing 0.5% fetal calf serum and 0.5 mM EDTA, suspended in 170 μl of FACS buffer (Becton Dickinson), and stored overnight in the dark at 4°C prior to analysis with CellQuest software (Becton Dickinson).

Statistical analysis. To compare differences in the IFN-γ responses of infants infected with HIV in utero to the responses of those infected peripartum, dif-
ferences in the distributions of background SFU, numbers of mean and peak HIV-positive SFU, numbers of peptides tested, and numbers of peptides
responses were assessed using infected with HIV-1 in utero and those of the infants infected peripartum or (ii) a linear mixed-effect model with a compound change in viral load over time, a linear mixed-effect model was used. For determination of the changes in peak numbers of HIV-specific SFU over the first year of life of infected infants, a linear mixed-effect model was used. For determination of the load at 1 month of age after testing for and excluding nonsignificant effect statistic was used for the comparison of the proportion of infants with positive responses at 1 month of age, controlling for viral load between month 1 and month 12 as the outcome variable. Linear regression was conducted at multiple ages per infant, and thus responses to a given peptide were counted once per infant if there was ever detection of a response with a particular product Peptide HLA restriction of each peptide precedes the sequence. Clade variants are indicated by a slash within the amino acid sequence. Concordance between peptide-stimulated IFN-γ secretion and detection of antigen-specific CD8+ T-cells. The presence of antigen-specific CD8+ T-cells and the relationship between the detection of these cells by major histocompatibility complex-tetrameric complexes and detection by IFN-γ ELISPOT assay were confirmed in three individuals. Figure 1 illustrates representative results obtained from one HIV-1-infected infant at 9 and 12 months of age, demonstrating the presence of antigen at 9 and 12 months of age, together with peptide-specific ELISPOT assay results. At 9 and 12 months of age, we detected tetramer-positive A2-CMV-spe- torant at 9 and 12 months of age, demonstrating the presence of antigen at 9 and 12 months of age, together with peptide-specific ELISPOT assay results. At 9 and 12 months of age, we detected tetramer-positive A2-CMV-spe-
representative of the presence of CD8+ SPOT assay results are shown above each plot. The antigen-specific IFN-γ/H925329a), and the detection of IFN-γ/cognate peptide stimulation have been observed before (3, tetramer and the corresponding functional response following peptide stimulation from PBMC isolated from infants infected with HIV-1 per 10^6 PBMC and 450 per 10^6 PBMC, respectively. Differences between the percentage of CD8+ T cells detected by tetramer and the corresponding functional response following cognate peptide stimulation have been observed before (3, 29a), and the detection of IFN-γ ELISPOT responses is likely representative of the presence of CD8+ antigen-specific T cells in circulation. HIV-1-specific ELISPOT responses in infants infected in utero or peripartum. We measured HIV-1-specific IFN-γ secretions from PBMC isolated from infants infected with HIV-1 in utero or peripartum and followed those responses over the first year of life. The peptides were used either singly or paired by clade variants and are presented by decreasing frequency of positivity.

Using this panel, we estimated the prevalence of detection of HIV-1-specific IFN-γ responses during the first year of life in HIV-1-infected infants (Table 2). The number of infants tested at each time point varied because of clinic attendance and mobility. We were able to test all HLA-restricted peptides in our panel on 29/33 (88%) infants tested at month 1 and on 43/45 (96%), 40/41 (97%), 26/29 (90%), and 24/26 (92%) infants at months 3, 6, 9, and 12, respectively. At 1 month of age, there was a trend for more-likely detection of HIV-1-specific IFN-γ responses in infants infected in utero compared to infants infected peripartum. Seven of 12 (58%) infants infected in utero had detectable responses versus 6 (29%) of 21 infants infected peripartum (P = 0.09). Although the differences did not reach significance due to small sample sizes, this trend is likely explained by the duration of virus infection. By 3 months of age, the prevalence of HIV-1-specific IFN-γ responses was approximately 50% in either group and, at this and subsequent ages, there was no significant difference in the prevalences of the detection of responses in infants with respect to the timing of infection with HIV-1.

To determine if the timing of HIV-1 infection affected the quality of the cellular immune response, we compared the breadths and strengths of IFN-γ responses in infants infected in utero versus peripartum (Table 3). We chose the month 3 time point for comparisons because the greatest number of infants (45/61 [75%]) were tested at that time. To determine HIV-1 specificity, we compared the prevalence of positive assays in HIV-1-infected infants with that in HIV-1 unexposed, uninfected infants. None of seven 3-month-old HIV-1 unexposed, uninfected infants had positive ELISPOT responses, suggesting a high specificity for the assay. We observed trends for infants infected peripartum to have stronger HIV-1-specific IFN-γ responses detected at 3 months of age, although the data did not reach significance. For infants infected in utero, the median magnitudes of mean and peak responses were 151 and 384 per 10^6 PBMC, respectively, versus 384 and 458 per 10^6 PBMC, respectively, in infants infected peripartum (P = 0.06 for both).

HIV-1-specific IFN-γ responses over the first year of life. In a subset of 18 infants, IFN-γ responses and plasma viral load measurements were conducted at every time point up to month 12 or death. These results are shown in Fig. 2a and b, respectively, and demonstrate a diverse pattern of immune recognition and viral replication. Three infants were completely lacking in detectable responses (B1-276, B1-160, and B1-005). Two infants demonstrated strengthening and broadening responses to infection over time (B1-454, B1-473). Two infants lost early responses, but the loss was not associated with mortality (B1-093, B1-259). In one infant, the loss of early responses preceded the infant’s death (B1-242). To interpret the changes in HIV-1-specific IFN-γ responses over the first year of life in all the infants, we employed a model that adjusted for age, incomplete and repeated measures, and the timing of infections. Log_{10}-transformed peak HIV-specific SFU numbers were used to model the responses over time. We found a significant change in peak HIV-1-specific IFN-γ responses in infants dur-
ing the first year of life, independent of the timing of infection with HIV-1 (P = 0.03) (Fig. 3). Peak HIV-specific SFU increased twofold with increasing age, from a mean of 251/10^6 PBMC (2.4 log_{10}) at 1 month of age to mean of 501/10^6 PBMC (2.7 log_{10}) at 12 months of age. To address the potential bias of survivor effect, we also limited the analysis to 30 infants who survived to month 12. We found a similar increase in peak IFN-γ responses with age, but the change was no longer statistically significant (P = 0.18). The strength of the peak HIV-specific SFU increased 1.5-fold with increasing age in the infants who survived to month 12, from a mean of 343/10^6 PBMC (2.53 log_{10}) at 1 month of age to a mean of 540/10^6 PBMC (2.73 log_{10}) at 12 months of age.

Early HIV-1-specific IFN-γ responses and HIV-1 replication kinetics. The emergence of HIV- and SIV-specific CD8+ T-cell immune responses in primary infection has been shown to correlate with declines in levels of viral replication. Therefore, we sought to determine the relationship between early HIV-1-specific IFN-γ responses and outcomes of HIV-1 infection in infants, as measured by peak viral loads, rates of decline of viral replication, and risk of mortality. The patterns of HIV-1 RNA plasma viral replication over time in infants with or without HIV-1-specific IFN-γ responses at 1 month of age, depicted by timing of infection, are shown in Fig. 4.

Peak HIV-1 plasma load is an important marker of disease progression in HIV-1-infected infants (52). Peak viral load was defined as the highest viral load detected within 6 months postinfection. We found no significant difference in mean log_{10} peak viral loads for infants infected in utero versus those infected peripartum. The mean peak viral load for 23 infants with defined in utero infection was 6.59 log_{10} ± 0.84 versus 6.86 log_{10} ± 0.67 among 37 infants infected peripartum (P = 0.2). Thirty-two infants had concurrent HIV-1-specific IFN-γ ELISPOT assays and HIV-1 RNA plasma viral loads measured at 1 month of age. As the timing of HIV-1 infection was shown not to significantly affect peak viral load, all 32 infants were considered as one group for the subsequent analyses. There was no a significant difference in mean log_{10} peak viral loads for infants with or without detectable HIV-1-specific IFN-γ responses at 1 month of life, after controlling for the baseline month 1 viral load. The mean peak viral load for 12 infants with detectable HIV-1-specific IFN-γ responses at 1 month of age was 6.82 log_{10} ± 0.18 versus 6.62 log_{10} ± 0.18 for 20 infants who lacked detectable responses at 1 month of age (P = 0.5). There were no significant differences in peak viral loads for infants with broad (>2 peptides) or strong (>500 HIV-1 SFU) IFN-γ responses at 1 month compared to those with narrower, weaker, or negative responses (data not shown).

Having seen no difference in the peak viral loads, we next investigated the relationship between the presence of HIV-1-specific IFN-γ responses at 1 month of age and the change in viral load over time. The presence of detectable HIV-1-specific IFN-γ responses at 1 month of life was not associated with a difference in the rate of change of viral load over the first year of life compared to the rate for infants who lacked such responses at 1 month (decline of 0.04 versus 0.02 log_{10} HIV-1 RNA copies/ml plasma/month, respectively; P = 0.2).

We lastly investigated the relationship between the presence and strength of HIV-1-specific IFN-γ responses at 1 month of age and infant mortality during the first year of life. There was a trend correlating the presence of HIV-1-specific IFN-γ responses at 1 month of life and increased mortality found with univariate analysis (hazard ratio [HR] = 2.72; 95% confidence interval [CI], 0.89 to 8.36; P = 0.08). There was also a trend for higher mortality in those infants with IFN-γ responses of <500 HIV-1 SFU (HR = 3.77; 95% CI, 0.94 to 15.13; P = 0.06). After controlling for the viral load at month 1 and the timing of infection in multivariate analysis, there were no statistically significant relationships either between mortality and the presence of month 1 HIV-1-specific IFN-γ responses (HR, 2.20; 95% CI, 0.62 to 7.87; P = 0.2) or between mortality and IFN-γ responses of <500 HIV-1 SFU (HR, 2.08; 95% CI, 0.70 to 6.17; P = 0.2). Thus, the presence or strength of HIV-1-specific IFN-γ responses in the first months of life had no effect on peak viral load, on the rate of decline in HIV-1 plasma viral load, or on survival in this cohort of HIV-1-infected infants.

DISCUSSION

We addressed a mechanism hypothesized to contribute to the sustained high viral loads measured in perinatal HIV-1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unexposed a</th>
<th>Exposed-infected b</th>
<th>P value c</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of individuals tested</td>
<td>7</td>
<td>18</td>
<td>.2</td>
</tr>
<tr>
<td>No. of peptides tested (range of median)</td>
<td>5 (1–9)</td>
<td>11 (6–18)</td>
<td>.08</td>
</tr>
<tr>
<td>Background SFU/10^6 PBMC median (25th–75th quartile)</td>
<td>57 (20–90)</td>
<td>34 (19–64)</td>
<td>.06</td>
</tr>
<tr>
<td>No. of positive responses (%)</td>
<td>0</td>
<td>12 (67)</td>
<td>.3</td>
</tr>
<tr>
<td>No. of positive peptides (range of median)</td>
<td>0</td>
<td>2 (1–6)</td>
<td>.4</td>
</tr>
<tr>
<td>Mean positive HIV SFU/10^6 PBMC median (25th–75th quartile)</td>
<td>n.a.d</td>
<td>151 (83–396)</td>
<td>.06</td>
</tr>
<tr>
<td>Peak positive HIV SFU/10^6 PBMC median (25th–75th quartile)</td>
<td>n.a.</td>
<td>155 (103–693)</td>
<td>.06</td>
</tr>
</tbody>
</table>

*Unexposed infants were born to HIV-1-seronegative women. The infection status of an infant was confirmed by testing for HIV-1 DNA in dried blood spots collected at the time of the visit, as described in Materials and Methods.

*Infants were categorized as infected in utero if HIV-1 DNA or RNA was detected in dried blood spots or plasma collected within the first 48 h of life. Infants were categorized as infected peripartum if HIV-1 DNA or RNA was undetectable within the first 48 h of life and detectable at 1 month of life.

*The P values for differences in responses between infants infected in utero and peripartum were determined by nonparametric test for differences in medians from independent samples, except for comparisons of numbers of individuals with positive responses, in which the P values were calculated from the chi-square statistic.

*d.n.a., not applicable.
infection, the adequacy of the CD8$^{+}$-T-cell immune response. We were able to establish the timing of infection in the infants as occurring either in utero or peripartum and to compare the development of CD8$^{+}$-T-cell effector function and viral loads. Infants infected peripartum had a tendency to generate stronger but not broader responses to HIV-1 peptides than did infants infected in utero. Both groups had similar increases in the magnitudes of HIV-1-specific IFN-γ responses over their first year of life, an indication that infants infected in utero are not more immunosuppressed than infants infected peripartum and that both groups possess the capacity for continuing immune maturation. Infants infected in utero did not demonstrate higher peak viral loads than infants infected peripartum, as has also been described in the Abidjan ANRS 049 Ditrame Study (52). A primary report describing the bimodal disease progression in perinatally infected infants suggests that in utero infection may interfere with the maturation of the immune system and increase the rate of development of immunosuppression (5), something we do not show with our data. Despite a rapid and relatively robust immune response to infection, induction of these early responses did not appear beneficial to infants during the first year of life, regardless of the timing of infection. Specifically, there was no relationship between the detection of these responses and a reduction in peak viral load, rate of decline of viral replication, or risk of mortality (independent of viral load).

Previous studies have relied on cross-sectional studies in older children, where there may be bias towards those who survived. The approach here, using a longitudinal analysis of a cohort of HIV-1-infected infants with well-defined timing of

FIG. 2. Spectrum of HIV-1-specific peptide responses in HIV-1-infected infants with measurements at every time point to 1 year (A) or death (B). Individual graphs present HIV-1-specific SFU/106 PBMC (stacked colored bars) and HIV-1 RNA copies/ml plasma (closed circles) as functions of age. The numbers above each bar or above the horizontal axes indicate the numbers of peptides tested at each time point, while the heights of each of the colored sections of the bars indicate the strengths of the peptide-specific responses. The number of peptides was the lowest at month 1, due to limitations in cell numbers, and remained constant from month 3 to 1 year or death. The notation of death indicates the infant died 1 to 3 months after the last measurement.
infection, has allowed us to address survivor bias and enabled prospective characterization of HIV-1-specific immunity over the first year of life. In our study, results from serial assays of the same infants revealed a significant twofold increase in HIV-1-specific IFN-γ responses over the first year of life, which became a trend for increasing responses when limited to those infants who survived to 1 year. Thus, older infants had stronger responses, which may be due in part to a survivor effect and in part to age-related maturation.

We observed that neonates with in utero or peripartum HIV-1 infection were able to generate IFN-γ responses of breadth and strength similar to those reported for adults with primary HIV-1 infection, albeit weaker than responses reported for adults with chronic infection (1). Two detailed studies with adults of CD8+ T-cell responses to primary HIV-1 infection both show a narrow response to approximately two epitopes within the first year of infection and a lack of correlation between the frequency of virus-specific IFN-γ responses and viral containment (11, 14). In our study, we find very similar kinetics in the induction of HIV-1-specific responses, with 52% of infants having detectable responses by 3 months of age to a median of two peptides at a mean magnitude of 384 HIV-1-specific SFU. There are few studies that describe virus-specific IFN-γ responses in perinatally infected infants. The results presented here indicate that neonatal CD8+ IFN-γ responses to HIV-1 infection are more prevalent than previously reported. Scott and colleagues investigated IFN-γ responses in a group of 13 infants of less than 6 months of age and found that 2/13 (15%) infants had detectable HIV-1-specific responses before the initiation of antiretroviral therapy (58). Wasik et al. observed an age-related increase in responses in their cohort of children on antiretroviral therapy and described two infants under 1 year of age who generated increasing IFN-γ responses in the setting of increasing viral loads (63). Our findings based on a large number of infants in the longitudinal cohort extend these reports and support the concept that the human neonate appears quite capable of mounting appreciable CD8+ T-cell-mediated IFN-γ responses. The timing and strength of the responses suggest that the main factor in the development of HIV-1-specific IFN-γ responses is not the age at the time of infection but rather the duration of exposure to HIV-1.

We believe our report to be the first comprehensive study of immune function in HIV-1-infected neonates. Our sample size permitted multivariate analysis of factors including baseline viral loads (month 1), the presence of detectable IFN-γ re-
responses, and the timing of infection in the model. The presence of HIV-1-specific IFN-γ responses was not associated with the control of HIV-1 infection in neonates. One explanation for this finding is the possibility that although IFN-γ secretion is widely used as a surrogate for CTL activity, it may not predict CTL levels and may be an inadequate marker to use as a measure of HIV-1-specific immunity. The ability of cells to produce IFN-γ in response to HIV-1 peptide stimulation has been shown not to fully predict levels of functional CTL. The quality of the CD8⁺-T-cell response is affected by perforin and granzyme production (2, 23), T-cell receptor flexibility (32), and the quality of CD4⁺ T-cell help (27), and all these factors are likely important for the control of HIV-1 replication. Additionally, the repertoire of cytokine production from human CD8⁺-T cells stimulated by either vaccination or natural infection is broad and diverse, and limiting analyses to one cytokine reduces the ability to detect associations (3, 16). Alternatively, IFN-γ secretion may accurately reflect the CD8⁺-T-cell responses to pediatric HIV-1 infection, but the immune pressure may promote generation of CTL escape variants. High levels of HIV-1 replication in the setting of antiviral CTL responses have been linked to the rapid emergence of CTL escape variants (6, 12, 22, 42). Additionally, viral variants adapted to the maternal CTL responses may be transmitted to the infant, limiting the capacity of the infant’s CTL response to have an effect on viral replication. The appearance of viral variants not recognized by the neonatal immune system may contribute significantly to the high viral loads we observed in this cohort. Delineation of viral and host factors in the pathogenesis of pediatric HIV-1 infection will hopefully generate better options for treatment and care of this population.

The lack of detectable responses in almost half of the individuals over the course of the study may not reflect a complete absence of HIV-1-specific IFN-γ responses, because of our use of defined CD8⁺-T-cell epitopes rather than overlapping peptides spanning the HIV genome. By its nature, the peptide panel does not fully represent the HIV-1 viral genome or recombinant variants, limiting our ability to detect responses to undefined epitopes. Also, by testing individual peptides rather than peptide pools, we maximized our chances of detecting low-level responses (4), and we were able to test peptides derived from HIV-1 subtypes A and D, previously known to elicit responses in HIV-1-infected individuals from Kenya (28), including many defined as being in a state of acute infection (14).

We find no link between the detection of early HIV-1-spe-

FIG. 3. HIV-1-specific IFN-γ responses increase with age in HIV-1-infected infants. Individual peak HIV-1 SFU responses are plotted on the y axis with respect to age of the infant, which is plotted on the x axis. Infants infected with HIV-1 in utero are represented by triangles; those infected peripartum are represented by circles. The linear mixed-effect regression lines are shown for changes in peak HIV-1 SFU numbers over time for infants infected in utero (dotted) and peripartum (solid) and are not significantly different from each other.

FIG. 4. HIV-1 RNA plasma viral loads during the first year of life in infants with or without HIV-1-specific IFN-γ responses detected at 1 month of age. (A) Twelve infants infected with HIV-1 in utero: 7 with month 1 HIV-1-specific IFN-γ early responses, 5 without. (B) Twenty infants infected peripartum: 6 with HIV-1-specific IFN-γ responses, 14 without. Open symbols/dashed lines represent individuals who lacked detectable HIV-1-specific IFN-γ responses at 1 month of life. Closed symbols/solid lines represent those who had month 1 HIV-1-specific IFN-γ responses. The mean log₁₀ of HIV-1 RNA copies per ml plasma for infants with month 1 HIV-1-specific IFN-γ responses are indicated by bold solid lines; the mean log₁₀ of HIV-1 RNA copies/ml plasma for infants without month 1-specific responses are represented by bold dashed lines.
cific immune responses and viral pathogenesis, but this lack of apparent protective effect in the setting of infection does not indicate vaccine-induced cellular responses will be nonprotec-
tive, as the outcome of neonatal exposure to antigen is likely determined by the antigenic dose and the timing and route of exposure. Our observation that neonates have the capacity to mount antiviral immune responses in the first months of life that are comparable to levels observed in adults with primary infection supports the concept of newborn immunization strat-
egies. Immunization of newborn rhesus macaques results in the emergence of SIV-specific immune responses, and immun-
ized infants demonstrated prolonged survival after challenge virus (60). In the lymphocytic choriomeningitis model, DNA
immunization of newborn mice results in rapidly generated CD8+ T-cell responses within the first weeks of life as well as long-lived, fully functional responses detectable 1 year postim-
munization (25, 65). However, our data support a cautionary approach with vaccines designed to mimic HIV-1-specific IFN-γ responses observed in infected individuals reliant on IFN-γ secretion as the sole immune correlate. These responses may be ineffective in the control of early HIV-1 replication and may not be representative of the spectrum of immune re-
ponses generated by vaccination.

ACKNOWLEDGMENTS

We thank Sandy Emery for viral load measurements, Julius Oguyi and Sammy Wambua for HLA typing, and Rose Bosire, Phelgona Otieno, Dalat Wamalwa, Grace Wariua, and Christine Gichuki for clinical examinations. We are grateful to Tim Rostron for assistance with HLA typing, training, and reagents. We thank Rupert Kaul and Marie Reilly for helpful discussions and critical reading of the manu-
script. We acknowledge the women and infant participants in this study and peer counselors for their contributions.

This work was supported by AIDS International Training and Research Program, NIH Fogarty International Center grant D43 TW 00007, and NIH grants TW06080 (B.L.L.) and HD23412-14 (G.J.-S.).

REFERENCES

der, E. S. Rosenberg, M. Alfheim, and B. D. Walker. 2003. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome dem-
onstrate broadly directed responses, but no correlation to viral load. J. Virol. 77:2081–2092.

Jones. 2000. HIV-specific CD8+ T cells produce antiviral cytokines but are

5. Blanche, S., M. Tardieu, A.-M. Duleige, C. Rouzioux, F. Le Deist, K. Fuku-

