BASIC CONCEPTS IN
PHASE EQUILIBRIA

Duke Omondi Orata

Nairobi University Press
Contents

Preface • vii •

Chapter

1: Stability of Phases • 1 •
 What makes a phase stable
 Principle of uniform chemical potential
 Effect of temperature on chemical potential
 Effect of pressure on chemical potential-temperature curves.

2: The Clapeyron Equation • 13 •
 Phase and components
 Use of Clapeyron equation in the construction of phase boundaries

3: Pressure-Temperature Diagrams for Real Systems • 27 •
 Phase diagram for water
 Phase diagram for carbon dioxide
 Phase diagram for sulphur
 Phase diagram for helium

4: The Lever Principle and the Phase Rule • 37 •
 The lever principle
 The phase rule
 Derivation of the phase rule for a multicomponent system
5: Applications of Phase and Lever Principles • 47 •
 Liquid-liquid equilibria
 Distillation of liquids
 Analysis of simple eutectic diagrams
 A eutectic diagram for a real system

6: Thermal Analysis • 61 •
 Bismuth-Cadmium system
 Compound formation
 Zinc-Magnesium system
 Incongruent melting compounds
 Alloy systems
 Partially miscible systems in the solid state
 Systems with transition points

7: A Brief Survey of Three Component Systems • 76 •
 Gibbs-Roozeboom triangular diagrams
 Acetic acid-water-chloroform system
 Triangular diagram for two partially miscible pairs

Reference Texts • 83 •
Index • 85 •
Preface

This textbook deals with the thermodynamic concepts as applied to phase equilibria. The book is ideal for both specialist and general degree students in chemistry and pharmacy.

Elaborate illustrations and complete mathematical details have been given to help the student grasp the fundamental ideas and concepts in phase equilibria. This approach has resulted primarily from my accumulated experience, gathered during my teaching this course to various undergraduate classes.

The student is strongly advised to attempt the problems given at the end of each chapter- the best way of learning physical chemistry is by solving as many problems as possible.

Duke Omondi Orata
May 1994