SURVEY SAMPLING
THEORY AND METHODS

DANKIT K. NASSIUMA
Table of Contents

PREFACE ix

1 INTRODUCTION 1
1.1 Overview of research methods 1
1.2 Surveys and sampling 7
1.3 Definitions 10
1.4 Properties of estimators 12
1.5 Sampling methods 14
1.6 Survey design and planning 15
1.7 Data collection methods 15
1.8 Sources of error in sampling 22
1.9 Pilot surveys (pre-surveys) 23
Practice problems 24

2 SIMPLE RANDOM SAMPLING 27
2.1 Introduction 27
2.2 Simple random sampling without replacement (SRSWOR) 27
2.3 Estimating the finite population variance S^2 35
2.4 Estimation of the population total 39
2.5 Estimation of the population proportion 40
2.6 Simple random sampling with replacement (SRSWR) 43
2.7 Subpopulations (domains) 50
2.8 Pooling of independent estimates in SRS 52
Practice problems 54

3 DETERMINATION OF SAMPLE SIZE 59
3.1 Introduction 59
3.2 Use of coefficient of variation 59
3.3 Use of probability statements 61
3.4 Determination of n for unknown σ and fixed c.i. length 63
3.5 Sample size based on sampling cost 64
Practice problems 67
4 SAMPLING WITH UNEQUAL PROBABILITY 71
4.1 Introduction 71
4.2 Sample selection by PSS with replacement 74
4.3 Estimation of the population total in PPS WR 76
4.4 Estimation of the \(\text{var}(\hat{Y}) \) 79
4.5 Comparison of PPS WR with SRS WR 82
4.6 Selection of samples by PPS WOR 84
4.7 Comparison of PPS WOR and PPS WR 96
4.8 Combination of PPS and SRS schemes 98
Practice problems 99

5 SYSTEMATIC SAMPLING 103
5.1 Introduction 103
5.2 Linear systematic sampling (LSS) 103
5.3 Circular systematic sampling (CSS) 106
5.4 Variance of \(\bar{y}_{sys} \) 107
5.5 Comparison of systematic sampling and simple random sampling SRS 109
5.6 Estimation of the variance of a systematic sample mean 112
5.7 Super populations 112
5.8 Systematic sampling using unequal probabilities 117
5.9 Repeated sampling in SYS 122
Practice problems 123

6 STRATIFIED RANDOM SAMPLING 125
6.1 Introduction 125
6.2 Estimation of the population mean 126
6.3 Estimation of the variance of \(\text{var}(\bar{y}_{st}) \) 129
6.4 Allocation of sample size 129
6.5 Comparison of stratified sampling with SRS 135
6.6 Allocations which need more than 100% sampling 137
6.7 Stratified sampling for proportions 138
6.8 Post-stratification 140
6.9 Stratified sampling with unequal probabilities 142
Practice problems 144
7 **RATIO AND REGRESSION ESTIMATORS** 147
 7.1 Introduction 147
 7.2 Ratio estimators 148
 7.3 Ratio estimators in stratified sampling 160
 7.4 Regression estimators 164
 7.5 Regression estimators for stratified sampling 168
 Practice problems 172

8 **CLUSTER SAMPLING** 177
 8.1 Introduction 177
 8.2 Single stage cluster sampling 181
 8.3 Multistage cluster sampling 196
 8.4 Two stage cluster sampling 197
 8.5 Stratification in cluster sampling 210
 Practice problems 213

9 **FURTHER TOPICS** 215
 9.1 Two phase sampling 216
 9.2 Successive sampling 220
 9.3 Estimation of population size 221
 Practice problems 227

REFERENCES 229

APPENDIX 231

INDEX 233
Preface

Surveys are inseparable from research and planning. This necessitates the teaching of sampling methods as well as their application not only at college and university level, but also to applied researchers.

It is the objective of this book to introduce the language, methods and application of sampling from a practical, mathematical perspective. It is expected that the reader will be enabled to plan and execute surveys and also be capable of evaluating estimates of various parameters especially the location and scale parameters as well as their standard errors.

The book is divided into nine chapters with the first chapter introducing the language of sampling and an overview of research projects, proposal writing and experimentation. The material in this chapter has a social science and educational research flair and is thus easy to apply in a wide range of situations including market research and opinion polls. The second chapter introduces the simple random sampling procedure which is the most basic sampling technique. This is followed by a study on methods of sample size determination in chapter three. This chapter is based mainly on the assumption that a simple random sampling procedure is used but it can easily be extended to other sampling procedures. Chapters four to eight focus on the unequal probability, systematic sampling, stratified sampling, ratio and regression estimation, and cluster sampling procedures. Elaborate proofs for various procedures are given in these chapters. In chapter nine, three topics in sampling are briefly discussed. These are aspects which are usually ignored in most books on sampling and include multiphase sampling, successive sampling and the estimation of population size.

In chapters two to nine, a cook-book kind of option is availed for those who may be interested in applications of the various methods.
Important functions for the estimates and their standard errors are highlighted in boxes so that the rest of the formulae can be skipped.

The material presented in this text when used for teaching at undergraduate level should be covered in two semesters. It is expected that the student has already taken some basic first and second year undergraduate mathematics courses. In the case of researchers interested in the applications aspect, a basic knowledge and appreciation of statistical inference is assumed.

It is hoped that this book will be friendly and invaluable to the researcher, lecturer and the student for the understanding and application of sampling procedures to a wide range of problems.