Quantitative survey methods

COECSA, 18th April 2013, Kampala

Dr. Jefitha Karimurio
University of Nairobi
Outline

1. Introduction
2. Defining the population,
3. Sampling and non-sampling errors,
4. Computation of the minimum sample size,
5. Sampling schemes,
6. Data methods and data collection form,
7. Planning for a survey plan.
Introduction

- A survey is a cross-sectional study: a “snap-shot” of what is happening in the population.

- Data are collected once; no follow-up of participants.

- **Numerical data for quantitative**; textual for qualitative surveys

- Occasionally, data on risk factors are collected.

- Data are analysed to examine the relationships between the risk factors and prevalent health conditions.
Why conduct a survey?

• Surveys provide information required for:
 – **Planning** new projects (baseline surveys)
 – **Evaluation of** existing projects (impact assessment surveys)
 – **Policy formulation, advocacy and health promotion**

• To **generate hypotheses** for further studies such as cohort studies and randomised controlled trials
Survey proposal

• A proposal and ethical approval are required.

• The proposal should provide evidence that the study is:
 - Feasible (adequate time, funds, personnel and technology)
 - Interesting
 - Novel (provides new information)
 - Relevant (will advance health policies and clinical practice)
Survey proposal include?

The proposal should include:

• **Clear survey objectives** defined in precise terms for ease of assessing whether they have been achieved.

• **Well-defined population (and study area)** for accurate estimation of prevalence and planning interventions.

• **Accurate procedures (written)** to enhance reliability.

• **Accurate budget** to avoid shortages or wastage of funds
Defining the population

• **Target population:** the total *eligible* population in the study area from which the sample is drawn.

• **Study population (sample):** persons selected and examined.

Other terms:

• **Reference population:** population to which the survey results applies: may be equal to or larger than the target population.

• The term **source population** is used if the sample is drawn from a portion of the target/reference population.
Population parameter and sample statistic (estimator)

- The aim is to estimate true prevalence in the target population.

- Usually, prevalence is measured in a representative sample and used as the estimator for the true prevalence.

- **Internal validity**: How the inference from the sample approximate the “truth” in the target population.

- **External validity** (generalisability): whether the results can be extrapolated to other settings, times, and so on.
Exercise 1: sampling

- The paper bag contain a many red and few black beans.

- Use the cup provided to draw 20 small sample (1 cup each).

- Estimate the prevalence (%) of black beans in each sample.

- Return the beans into the bag.

- Select 20 large samples (3 cups each) and repeat the exercise.
Results: Small samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
</tr>
</tbody>
</table>
Results: Large samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• Are the prevalence estimates of the samples equal? Why?

• Compare the range (highest minus lowest estimate) for the small and large samples?

• Does this affect the sampling distribution?

• From this exercise, can you tell the true prevalence in the bag or in another bag with similar beans?

• What can you do to determine the true prevalence?
Sampling variation

- Multiple samples drawn from the same population rarely provide the same results.

- Sampling variation is the term used to describe this difference. It occurs due to chance.

- Moreover, the estimates from multiple samples are normally distributed around the true prevalence (sampling distribution).

- In a survey only one sample is studied and statistical principles used to estimate the true prevalence.
Random Sampling Error (SE)

- Statistical term used to express the **difference between an estimator and the true prevalence**. It is not a “mistake”.

- SE occurs due to chance since the prevalence in the sample and in the rest of the target population may not be equal.

- Minimized by selection of an **adequate/representative** sample.

- The larger the sample the closer the estimator is to the “truth”. No SE/confidence interval if the whole population is examined.

- NB: Standard deviation is for actual data and SE for proportions.
Non-sampling (systematic) errors

• Results from biased survey methods.

• Examples:
 – Biased selection of the sample,
 – Non-response or exceeding the sample,
 – Mistakes in diagnosis and clinical grading,
 – Mistakes in coding, recording and entry of data,
 – Biased analysis and reporting.
Non-sampling errors continued

- Non-sampling errors distort survey results and may lead to ridiculous findings which are not related to the objectives.

- May lead to over or under-estimation of the true prevalence.

- Minimised through meticulous training and validation of the enumerators (inter-observer agreement testing) and data clerks.

- Non-sampling errors can neither be corrected nor compensated for using statistical methods/arguments.
Compute of minimum sample size

- Parameters:
 - Expected prevalence (p)
 - Maximum acceptable sampling error (e)
 - Confidence limit (usually 95% or Z score of 1.96)
 - Expected design effect (d)

- Equation 1:

\[
\text{Minimum sample size} = d \frac{Z^2p(1-p)}{e^2}
\]
Expected prevalence

• A survey is needed because the prevalence is not known.

• Therefore, you have to estimate or predict the prevalence using:
 – Reports/publications of preceding studies (literature review),
 – World Health Organization estimates,
 – Risk scores from pre-survey risk assessment (e.g. trachoma),

• The **lower** the **prevalence** the **larger** the **sample** (Equation 1).
Minimum acceptable sampling error

• Indicates the desired precision for a specified prevalence estimate. 95% CI is equal to prevalence +/- 1.96 SE.

• Consequently, the error depends on the prevalence estimate.

• The standard *relative precision* is 20% of the prevalence estimate,

• Generally, an error of >50% is considered too low for accurate statistical inference.
Examples

- If prevalence = 1%, then 20% of 1% = absolute precision of +/- 0.2%; expressed as: 1%(95%CI: 0.8%-1.2%).

- Prevalence = 30%, then 20% of 30% = absolute precision of +/- 6% or 30%(95% CI: 24%-36%).

- If prevalence is 5%, 10%, 15% or 40% then?

- Precision = accuracy of the estimator; confidence level = certainty that the true prevalence is contained in the 95%CI.
Exercise 2: Absolute/relative precision

<table>
<thead>
<tr>
<th>serial</th>
<th>Assumed prevalence</th>
<th>Precision (maximum error acceptable)</th>
<th>Expected 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Relative</td>
<td>Absolute</td>
</tr>
<tr>
<td>1.</td>
<td>10%</td>
<td>50%</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>10%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>10%</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>20%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>35%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>15%</td>
<td></td>
<td>7.5</td>
</tr>
</tbody>
</table>
Design Effect

• The factor by which the sample for Cluster Random Sampling (CRS) is multiplied, to compensate for increased random SE.

• Penalty for deviating from Simple Random Sampling (SRS).

• **Predicted** using experiences from previous studies. Therefore, 95% CIs for CRS are routinely adjusted for potential clustering.

• **Clustered diseases** like trachoma and **large survey clusters** attract high design effects.
Exercise 3

• Use the hints below to spot the differences in the parameters used to calculate the samples in the next slide.

• Note: the factors that increase the samples size are:

 – Low prevalence,

 – High precision (standard for prevalence surveys = +/-20% of the expected prevalence),

 – High design effect,

 – High confidence level (standard = 95%).
<table>
<thead>
<tr>
<th>Variables</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence estimate</td>
<td>35%</td>
<td>20%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Absolute precision (max. acceptable error)</td>
<td>+/-7%</td>
<td>+/-4%</td>
<td>+/-3%</td>
<td>+/-2.5%</td>
</tr>
<tr>
<td>Confidence level</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>Design effect</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Minimum sample</td>
<td>713</td>
<td>1,537</td>
<td>768</td>
<td>438</td>
</tr>
</tbody>
</table>
Exercise 4: Computation of sample size

Generate survey sample sizes by feeding different parameters in the:

- Excel sheet with survey sample size computation formula
- Sample size calculation software
Cost of a survey and sample size

• The sample size is computed to inform budgeting/planning.

• The larger the sample the higher the cost: balance between the sample size and available funds is critical.

• Usually, it is the precision (minimum acceptable error) of the prevalence estimate which is adjusted to achieve this balance.

• DO NOT commence a survey without adequate resources: time, money, manpower/skills, materials and equipment.
Target population and sample size

• If the target population is >5,000 people, it is not used to compute the minimum sample size.

• Further increase has minimal effect on the sample size.

• Sample size calculation formula for population based surveys (Equation 1) assumes population size of >5,000 people.

• Same principle is used in opinion polls: standard sample size used, irrespective of the population of the country.
Selection of sample: Sampling frame

• Equal probability of selection (epsem) methods. Non-probability methods will be discussed in qualitative methods.

• Prepare sampling frame: complete list of all sampling units in the target population from which the sample is selected.

• In the SRS the sampling unit is an individual person while in CRS it is a group of people (cluster).

• A cluster can be a village (rural setting), enumeration areas or a block of houses (urban setting/refugee camps).
What is the frame based on?

• Ideally, a pre-survey census should be conducted. In clinical studies clinic/admission/theatre registers are used.

• Most recent census reports are commonly used because census is too expensive for most eye care projects.

• Where only an old census report is available, project the target population using the average growth rate.

Selection of the sample: process

• Use a sampling scheme that is easy to implement, economical and does not introduce biased in estimation of the prevalence.

• The sample can be drawn from the sampling frame using: SRS method, one-stage CRS or two-stage CRS.

• The first stage CRS involves selection of clusters and second stage the households.

• Multi-stage sampling: complicated sampling and analysis.
Data collection methods

- Observation: for example a clinical examination or inspection of a household for environment risk factors.

- In-person interview (one-to-one basis). Open ended questions to collect textual data to be covered in qualitative methods.

- Telephone interview.

- Post questionnaires via mail or online: interviewer gives the questionnaires to potential respondents (self-administered).
In-person interviews/examination

• The interviewer asks questions or examines the respondent.

• Does not give the questionnaire to the respondent. Subsequent questions may provide answers/hints.

• Advantages:
 – It reaches people who cannot be reached by telephone, post and internet.
 – It creates rapport (respondent can ask for clarifications).
In-person interviews continued

• Disadvantages:
 – Takes a longer period of time than self-administered questionnaire,
 – Expensive due to personnel/travel costs,
 – May not get permission to visit respondents when they are busy at work/school,
 – More prone to bias e.g. due to personal appearance.
Data collection form (questionnaire)

• Define the survey data set and collect the **minimum data set required to meet the objectives** of the survey.

• Define the attributes of each variable for electronic data entry system: name, type, length, code (e.g. Male =2, Female =2) etc.

• Types of data collection forms:
 – fully structured (ordered questions, read word-for-word),
 – semi-structured questionnaire,
 – unstructured interview schedule.
Survey time-table (Gant chart)

<table>
<thead>
<tr>
<th>ACTIVITIES</th>
<th>TIME (DAYS, WEEKS OR MONTHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1. Procurement</td>
<td></td>
</tr>
<tr>
<td>2. Set-up survey office</td>
<td></td>
</tr>
<tr>
<td>3. Recruit staff</td>
<td></td>
</tr>
<tr>
<td>4. Prepare data capture tools</td>
<td></td>
</tr>
<tr>
<td>5. Training and validation</td>
<td></td>
</tr>
<tr>
<td>6. Pilot study</td>
<td></td>
</tr>
<tr>
<td>7. Data collection/analysis</td>
<td></td>
</tr>
<tr>
<td>8. Interim report</td>
<td></td>
</tr>
<tr>
<td>9. Final report</td>
<td></td>
</tr>
<tr>
<td>10. Disseminate the findings</td>
<td></td>
</tr>
</tbody>
</table>
Procurement and recruitment

• List all equipment /supplies required for scheduled activities.

• Procure/transport them to survey sites prior to commencement of data collection.

• List main tasks involved and outline the job descriptions. Recruit adequate staff and allow for possible attrition.

• Include: coordinator, statistician, logistics manager, enumerators, data clerks, drivers, guides and community mobilisation team.
Training, pilot study and validation

• A training includes: background information of the study area, survey methods and logistics.

• A pilot study is conducted during the training workshop to test and improve the data collection tools.

• Inter-observer agreement testing is done to validate the enumerators. Training is repeated agreement is low.

• Also, train and test data entry clerks. A test run electronic data capture tools using data from the pilot study.
Data collection

• Requires **meticulous planning and co-ordination**,

• Support by the local communities is critical. Community and individual **consents** should be taken prior to data collection.

• **Community mobilisation** is required throughout the survey period to ensure high study participation rate,

• Ensure **adequate materials**: time-tables, route maps, directories, data collection tools, consent forms and manuals.

• Arrange for transport, food/accommodation and allowances.
Data management

• Plan for data management and included it in survey budget.

• It involves inspection of the completed forms to ensure they have no mistakes, data entry, cleaning and analysis.

• Send immediate feed-back to the data collection team if mistakes are noted.

• Data analysis to calculate: participation rate, prevalence estimates and correlations between variables.
Reporting and dissemination

• Include reporting of the survey findings in the budget.

• The principle investigator is expected to at least:
 – Prepare and circulate the draft survey report for inputs from peers and partners,
 – Write the final comprehensive report,
 – Brief project partners and the community on key findings.
 – Others: Publish/conferences /WHO meetings etc
Take home message

• A survey is a cross-sectional study.

• Objectives should be clearly and precisely stated because they inform the type data to be collected and activities to plan for.

• The prevalence in a representative sample is used as the estimator for the unknown prevalence in the target population.

• Detailed planning, supervision, training and pilot study are vital.

• Allocate funds for data analysis, reporting and dissemination.
References

• Rapid Assessment of Avoidable Blindness manual:
 www.iceh.org.uk/display/WEB/Rapid+assessment+of+avoidable+blindness+%28RAA+BL%29+CD)