Show simple item record

dc.contributor.authorNdenga, BA
dc.contributor.authorMutuku, FM
dc.contributor.authorNgugi, HN
dc.contributor.authorMbakaya, JO
dc.contributor.authorAswani, P
dc.contributor.authorMusunzaji, PS
dc.contributor.authorVulule, J
dc.contributor.authorMukoko, D
dc.contributor.authorKitron, U
dc.contributor.authorLaBeaud, AD
dc.date.accessioned2018-01-10T09:41:15Z
dc.date.available2018-01-10T09:41:15Z
dc.date.issued2017
dc.identifier.citation10.1371/journal.pone.0189971en_US
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pubmed/29261766
dc.identifier.urihttp://hdl.handle.net/11295/102301
dc.description.abstractAedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (P<0.001), outdoors than indoors (P<0.001) and in urban than rural sites (P = 0.008). Significantly more Ae. aegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (P<0.001) and in urban than rural areas (P<0.001). Significantly more mosquitoes were collected using Biogents-sentinel traps in urban than rural areas (P = 0.008) and in western than coastal sites (P = 0.006). The probability of exposure to Ae. aegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral diseases and for the planning of surveillance and control programs.en_US
dc.language.isoenen_US
dc.publisherUniversity of Nairobien_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.titleCharacteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya.en_US
dc.typeArticleen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States