Show simple item record

dc.contributor.authorMitema, A
dc.contributor.authorOkoth, S
dc.contributor.authorRafudeen, MS
dc.date.accessioned2019-09-10T06:10:32Z
dc.date.available2019-09-10T06:10:32Z
dc.date.issued2018
dc.identifier.citationFungal Biol. 2018 Apr;122(4):203-213.en_US
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pubmed/29551194
dc.identifier.urihttp://erepository.uonbi.ac.ke/handle/11295/107088
dc.description.abstractoxigenic Aspergillus species produce mycotoxins that are carcinogenic, hepatotoxic and teratogenic immunosuppressing agents in both human and animals. Kenya frequently experiences outbreaks of aflatoxicosis with the worst occurring in 2010, which resulted in 215 deaths. We examined the possible reasons for these frequent aflatoxicosis outbreaks in Kenya by studying Aspergillus flavus diversity, phenotypes and mycotoxin profiles across various agricultural regions. Using diagonal transect random sampling, maize kernels were collected from Makueni, Homa Bay, Nandi, and Kisumu counties. Out of 37 isolates, nitrate non-utilizing auxotrophs complementation test revealed 20 vegetative compatibility groups. We designated these groups by the prefix "KVCG", where "K" represented Kenya and consequently assigned numbers 1-20 based on our findings. KVCG14 and KVCG15 had highest distribution frequency (n = 13; 10.8 %). The distribution of the L-, S- and S-/L-morphotypes across the regions were 57 % (n = 21); 7 % (n = 3) and 36 % (n = 13), respectively. Furthermore, a unique isolate (KSM015) was identified that had characteristics of S-morphotype, but produced both aflatoxins B and G. Coconut agar medium (CAM) assay, TLC and HPLC analyses confirmed the presence or absence of aflatoxins in selected toxigenic and atoxigenic isolates. Diversity index (H') analyses ranged from 0.11 (Nandi samples) to 0.32 (Kisumu samples). Heterokaryon compatibility ranged from 33 % (for the Makueni samples, n = 3) to 67 % (Nandi samples, n = 6). To our knowledge, this is the first reported findings for A. flavus diversity and distribution in Nandi, Homa Bay and Kisumu counties and may assist current and future researchers in the selection of biocontrol strategies to mitigate aflatoxin contamination as has been researched in Makueni and neighbouring counties. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherUniversity of Nairobien_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAflatoxins; Fluorescence; HPLC; Heterokaryon compatibility; Morphotypes; TLCen_US
dc.titleVegetative compatibility and phenotypic characterization as a means of determining genetic diversity of Aspergillus flavus isolatesen_US
dc.typeArticleen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States