Show simple item record

dc.contributor.authorOngwae, Mathew T
dc.date.accessioned2022-11-17T11:23:34Z
dc.date.available2022-11-17T11:23:34Z
dc.date.issued2022
dc.identifier.urihttp://erepository.uonbi.ac.ke/handle/11295/161779
dc.description.abstractRoad speed limit violations have been classified among the major causes of road accidents in developing countries including Kenya. As much as there have been many technological solutions that have been developed to curb vehicle speeding, still cases of road speed limit violations that lead to road accidents continue to rise. However, research has shown that drivers are more responsible on observing road speed limits when they are aware of being monitored. Thus to curb the vehicle speeding problem, a solution for real-time monitoring and identification of driver details could help. The objective of this project was to design and develop a prototype for an in-vehicle Radio Frequency Identification (RFID) and Global Positioning System (GPS)-based device that can be used for real-time monitoring and identification of drivers violating road speed limits. Thereafter the RFID and GPS functionalities of the prototype were tested and analysed. Prototyping methodology was used in the system development. The developed prototype comprises of the following critical parts: an embedded system that was deployed in a test vehicle and a web application for remote real-time monitoring and identification of drivers. The development of the solution was done using readily available off-the-shelf electronic components that were integrated by C programming using the Arduino Integrated Development Environment (Arduino IDE). The web application was done using python programming and PostgreSQL database. An experimental approach was used to collect data by fixing the developed prototype in a vehicle and driving it along the identified test locations. The data (GPS coordinates, RFID identities and Vehicle Speed) was sent to a remote server for analysis to ascertain the proposed system’s functionality and reliability. A total of 60 speed violation tests were done and an impressive 53 speed violation instants were successfully detected and updated on the web application within 3 seconds of violation iv detection. The instances of failure on speed violation updates were occasioned by poor GSM network connectivity in the areas where failure was detected. This could be rectified by including redundancy connectivity using a satellite module that would provide connectivity in case of poor GSM connectivity. This can also be solved by integrating the embedded solution with an internal storage that will store violation data wherever there’s poor GSM connectivity then transmit the data to the remote server when better GSM connectivity is restored.en_US
dc.language.isoenen_US
dc.publisheruniversity of nairobien_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectGPS Module, GSM Module, RFID reader, Electrically Erasable Programmable Read-Only Memory (EEPROM), Embedded Intelligent System (EIS), Radar Technology, LiDAR Technologyen_US
dc.titleIn-vehicle Rfid and Gps-based Device for Real-time Identification of Road Speed Limit Violatorsen_US
dc.typeThesisen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States