Show simple item record

dc.contributor.authorOnyango, Nelson O
dc.contributor.authorMüller, Johannes
dc.date.accessioned2013-06-23T12:22:25Z
dc.date.available2013-06-23T12:22:25Z
dc.date.issued2013
dc.identifier.citationNelson Owuor Onyango, Johannes Müller (2013). Determination of optimal vaccination strategies using an orbital stability threshold from periodically driven systems. Journal of Mathematical Biology February 2013en
dc.identifier.urihttp://link.springer.com/article/10.1007/s00285-013-0648-8
dc.identifier.urihttp://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/38581
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/pubmed/?term=onyango+n
dc.description.abstractWe analyse a periodically driven SIR epidemic model for childhood related diseases, where the contact rate and vaccination rate parameters are considered periodic. The aim is to define optimal vaccination strategies for control of childhood related infections. Stability analysis of the uninfected solution is the tool for setting up the control function. The optimal solutions are sought within a set of susceptible population profiles. Our analysis reveals that periodic vaccination strategy hardly contributes to the stability of the uninfected solution if the human residence time (life span) is much larger than the contact rate period. However, if the human residence time and the contact rate periods match, we observe some positive effect of periodic vaccination. Such a vaccination strategy would be useful in the developing world, where human life spans are shorter, or basically in the case of vaccination of livestock or small animals whose life-spans are relatively shorter.en
dc.language.isoenen
dc.titleDetermination of optimal vaccination strategies using an orbital stability threshold from periodically driven systemsen
dc.typeArticleen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record