Show simple item record

dc.contributor.authorMaina, JN
dc.date.accessioned2013-07-22T12:25:18Z
dc.date.available2013-07-22T12:25:18Z
dc.date.issued1987
dc.identifier.citationRespir Physiol. 1987 Apr;68(1):99-119.en
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/pubmed/3602614
dc.identifier.urihttp://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/49720
dc.description.abstractThe lungs of five charadriiform species of bird, two of which are good divers and three predominantly flyers (soarers and gliders) have been analysed by morphometric techniques. Largely the morphometric structural values in the divers significantly exceeded those of the flyers (gulls). The average weight specific surface area of the blood-gas (tissue) barrier in the divers (28.45 +/- 2.05 cm2 X g-1 SD) surpassed that of the flyers (23.5 +/- 3.61 cm2 X g-1 SD). The divers had a higher volume of the pulmonary capillary blood per unit body weight (4.42 +/- 0.11 cm3 X kg-1 SD) than the flyers (2.84 +/- 0.58 cm3 X kg-1 SD). The weight specific volume of the lung in the divers (34.90 +/- 3.11 cm3 X kg-1 SD) exceeded that of the flyers (26.94 +/- 3.15 cm3 X kg-1 SD). The total morphometric pulmonary diffusing capacity per unit body weight in the divers (4.73 +/- 0.05 ml O2 X (min X mm Hg X kg)-1 SD) was higher than that of the flyers (3.09 +/- 0.47 ml O2 X (min X mm Hg X kg)-1 SD). The divers, however, had a notably thicker blood-gas (tissue) barrier with a harmonic mean thickness of 0.212 +/- 0.03 micron SD compared to that of the flyers (0.138 +/- 0.02 micron SD). The data acquired here commensurate the modes of life exhibited by these two groups of bird. The divers, which are relatively energetic birds, expend a lot of energy to move and stay underwater, concomitantly undergoing prolonged asphyxia during submergence and may hence need to extract as much of the oxygen in the pulmonary air as possible to prolong a dive. These birds appear in general to have structurally better adapted lungs than those of the gulls, birds which to a large extent exhibit relatively less energetic soaring and gliding flights.en
dc.language.isoenen
dc.titleMorphometrics of the avian lung. 4. The structural design of the charadriiform lungen
dc.typeArticleen
local.publisherDepartment of Veterinary Anatomy, University of Nairobien


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record