• Login
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The palaeo-lake Suguta and its importance for understanding lake level fluctuations in the East African Rift System

    Thumbnail
    Date
    2010
    Author
    Junginger, A
    Olago, DO
    Trauth, MH
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    We studied the most recent dry-wet-dry cycle in the presently arid Suguta Valley in the Northern Kenya Rift where a 300-m-deep lake has formed during the so-called African Humid Period (AHP, 14.8-5.5 ka BP). Hydromodeling suggests that a relatively moderate 25% increase in precipitation was responsible for this dramatic lake level rise, which demonstrates the character of the Suguta Valley as an amplifier lake system. To detect the response of this lake system to climate fluctuations and their possible driving mechanisms with a focus on abrupt vs. gradual changes, we reconstructed a palaeo-lake level record for the time between 14 and 5 ka BP from up to 40 m thick lake-sediment sequences at three locations in the ~2,500 km2 palaeo-lake Suguta area. The sediments have been investigated for sediment characteristics such as grain size distributions, detrital and authigenic mineral phases, geochemical properties and microfossil assemblages. The stratigraphy for the sequences is based on 38 AMS 14C ages of biogenic carbonate and charcoal samples. Parallel dating of charcoal and snail-shell samples show age differences between 1,570-2,240 years suggesting a remarkably high, but well-defined reservoir age for palaeo-Lake Suguta most likely due to aged groundwater or 14C depleted CO2 degassing from active volcanoes. The observed reservoir effect highlights the potential problems while correlating East African lake level records with chronologies based on 14C datings of aquatic materials. The new chronology of water level fluctuations in the amplifier-lake Suguta indicates a general dry-wet-dry cycle synchronous with other lake chronologies during the AHP and multiple short-term fluctuations with abrupt lake level drops between 100 to 300 m within 100 to 200 years at 12.8-11.6 (during Younger Dryas time), 11.1-10.9; 10.4-10.2; 9.5-9.1; 9.0-8.8; 8.5-8.1 (during the 8.2 ka event) cal ka BP that seem to be linked with changes in the coupling between atmosphere and ocean systems. In contrast, the termination of the overall lake episode during the AHP shows a relatively gradual (linear) response to the reduction of solar heating due to insolation changes. The results of the analysis provides new insights into the sensitivity of Rift Valley lakes to climate change on different time scales. Abrupt climate shifts most likely caused dramatic environmental pressure on the biosphere, including humans that were already able to adopt relatively quickly to environmnetal change by new technologies during this time.
    URI
    http://adsabs.harvard.edu/abs/2010AGUFMGC51C0765J
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/55804
    Citation
    American Geophysical Union, Fall Meeting 2010, abstract #GC51C-0765
    Publisher
    University of Nairobi
     
    Department of Geology
     
    Subject
    [0746] CRYOSPHERE / Lakes, [1807] HYDROLOGY / Climate impacts, [9305] GEOGRAPHIC LOCATION / Africa
    Collections
    • Faculty of Science & Technology (FST) [4220]

    Copyright © 2019 
    University of Nairobi Library
    | UoN Quality Policy | Send Feedback
     

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2019 
    University of Nairobi Library
    | UoN Quality Policy | Send Feedback