Show simple item record

dc.contributor.authorKhalagai, J.M.
dc.contributor.authorKavila, M.
dc.date.accessioned2013-05-07T10:32:47Z
dc.date.available2013-05-07T10:32:47Z
dc.date.issued2012
dc.identifier.citationInternational Electronic Journal of Pure and Applied Mathematics Volume 5 No. 3 2012, 99-104en
dc.identifier.urihttp://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/19755
dc.description.abstractLet B(H) denote the algebra of bounded linear operators on a Hilbert Space H into itself. Given A,B ∈ B(H) define C(A,B) and R(A,B) : B(H) −→ B(H) by C(A,B)X = AX − XB and R(A,B)X = AXB − X. Our task in this note is to show that if A is one-one and B has dense range then C(A2,B2)X = 0 and C(A3,B3)X = 0 imply C(A,B)X = 0 for some X ∈ B(H). Similarly, if R(A2,B2)X = 0 and R(A3,B3)X = 0 then R(A,B)X = 0 for some X ∈ B(H).en
dc.language.isoenen
dc.subjectcommutant,en
dc.subjectquasiaffinityen
dc.subjectnormal operatoren
dc.titleOn commutants and operator equationsen
dc.typeArticleen
local.publisherSchool of Mathematics University of Nairobien


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record